Affiliation:
1. The Pennsylvania State University
Abstract
Summary
Rate-time decline-curve analysis is the technique most extensively used by engineers in the evaluation of well performance, production forecasting, and prediction of original fluids in place. Results from this analysis have key implications for economic decisions surrounding asset acquisition and investment planning in hydrocarbon production. State-of-the-art natural gas decline-curve analysis heavily relies on the use of liquid (oil) type curves combined with the concepts of pseudopressure and pseudotime and/or empirical curve fitting of rate-time production data using the Arps hyperbolic decline model. In this study, we present the analytical decline equation that models production from gas wells producing at constant pressure under boundary-dominated flow (BDF) which neither employs empirical concepts from Arps decline models nor necessitates explicit calculations of pseudofunctions. New-generation analytical decline equations for BDF are presented for gas wells producing at (1) full production potential under true wide-open decline and (2) partial production potential under less than wide-open decline. The proposed analytical model enables the generation of type-curves for the analysis of natural gas reservoirs producing at constant pressure and under BDF for both full and partial production potential. A universal, single-line gas type curve is shown to be straightforwardly derived for any gas well producing at its full potential under radial BDF. The resulting type curves can be used to forecast boundary-dominated performance and predict original gas in place without (1) iterative procedures, (2) prior knowledge of reservoir storage properties or geological data, and (3) pseudopressure or pseudotime transformations of production data obtained in the field.
Publisher
Society of Petroleum Engineers (SPE)
Subject
Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献