Imbibition and Water Blockage In Unconventional Reservoirs: Well-Management Implications During Flowback and Early Production

Author:

Bertoncello A..1,Wallace J..2,Blyton C..3,Honarpour M..4,Kabir C.S.. S.2

Affiliation:

1. Total EP USA

2. Hess Corporation

3. University of Texas at Austin

4. BHP Billiton

Abstract

Summary Driven by field logistics in an unconventional setting, a well may undergo weeks to months of shut-in after hydraulic-fracture stimulation. In unconventional reservoirs, field experiences indicate that such shut-in episodes may improve well productivity significantly while reducing water production. Multiphase-flow mechanisms were found to explain this behavior. Aided by laboratory relative permeability and capillary pressure data, and their dependency on stress in a shale-gas reservoir, the flow-simulation model was able to reproduce the suspected water-blocking behavior. Results demonstrate that a well-resting period improves early productivity and reduces water production. The results also indicate that minimizing water invasion in the formation is crucial to avoid significant water blockage.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3