Data Analysis for Polymer Flooding That Is Based on a Comprehensive Database

Author:

Saleh Laila Dao1,Wei Mingzhen1,Zhang Yandong1,Bai Baojun1

Affiliation:

1. Missouri University of Science and Technology

Abstract

Summary It is of major importance to analyze polymer-flooding data because they can be used to obtain screening criteria and identify where and how polymer can be best used to enhance oil recovery. However, recently published screening criteria regarding polymer flooding were based on data collected from the biannual enhanced-oil-recovery (EOR) surveys published by the Oil & Gas Journal. These data recorded valuable information for finished and ongoing polymer flooding worldwide, but they are constrained in two ways. First, they do not include some important information, such as the formation-water salinity, divalent-cation concentration, and polymer type and concentration. Second, the field data do not reflect recent polymer-technology developments that are still in the laboratory-evaluation and pilot-testing stages. To overcome these limitations, a comprehensive data set that provides the overall picture of polymer-flooding research and application is presented in this paper. In total, 865 polymer-flooding projects were considered to construct the data set, including 481 field projects from the Oil & Gas Journal (1974–2012), 329 laboratory experiments (1964–2013), and 70 pilot test projects (1966–2016) recorded in the literature. The laboratory data include porosity, permeability, oil viscosity, polymer molecular weight (MW), polymer viscosity, polymer concentration, polymer-slug size, water salinity, and divalent-cation concentration. All the data reported in this paper showed the experimental conditions that researchers used, which is consistent with the objective of our work. Our purpose is to summarize the data and tell the conditions in which polymer had been tested rather than presenting the screening criteria for polymer-flooding applications. For pilot and field tests, we only select those papers in which a project reaches or exceeds the goal of the project design. Graphical and statistical methods are used to analyze and describe the data set. The distribution of major parameters important to polymer-flooding design is presented with histograms, and the range of all parameters and their statistical values are presented with box plots. The existing data collected in this work have been statistically analyzed, resulting in some generic trends that could aid future readers in the design of a successful polymer-flooding project, such as data pertaining to the formation-water salinity, polymer MW, concentration, and polymer viscosity.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3