AI Grid Design for Fast Reservoir Simulation

Author:

Nghiem Long1,Dang Cuong1,Nguyen Ngoc1,Yang Chaodong1,Luo Jia1

Affiliation:

1. Computer Modelling Group Ltd.

Abstract

Abstract Reservoir simulators based on physics provide the most accurate method for predicting oil and gas recovery, in particular from waterflood and EOR processes. However, detailed full-field simulation can be computationally demanding. In recent years, there have been attempts in accelerating reservoir simulation by combining simplification of the gridding requirement with data-driven approaches while maintaining the full physics. One such approach is the physics-based data-driven flow network model where 1D or 2D grids connecting the wells are configured and simulated. The parameters of the flow network model are then tuned to match full 3D simulation or field-data. Even though the grid has been simplified, a large number of parameters are needed to reproduce the 3D simulation results. In this paper, an approach similar to the flow network model is presented. The main contribution of this paper is the parameterization of the gridding process between the wells such that a minimal number of parameters are needed. Essentially, the grids between the wells are configured to model accurately the flow behavior. The corner-point grid geometry is kept so that current simulators could be used with the proposed method. In this paper, the grid geometry is determined with AI methods for one waterflood run. The grid could be used subsequently for waterflood with widely different injection/production scenarios and even for chemical flood. The ability of the approach to derive the grid from a single waterflood run is another significant contribution of this paper.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3