A Study of Three Phase Relative Permeability and Hysteresis in Water Alternating Gas (WAG) Injection

Author:

Arogundade O..1,Shahverdi H..1,Sohrabi M..1

Affiliation:

1. Heriot Watt University

Abstract

Abstract Various techniques of Enhanced Oil Recovery (EOR) exist and amongst them water and gas injection are the most widely used. It has been shown that combining water and gas injection in a WAG (water alternating gas) scheme can result in additional oil recovery. Interest in WAG injection has increasingly grown in recent times with many reservoirs around the world now under WAG injection. Numerical simulation of WAG requires reliable three-phase relative permeability and hysteresis data which are normally obtained from models available in commercial simulators. This paper utilizes core-flood experimental data from literature to investigate validity of these models. The findings from this study provide evidence that different three-phase relative permeability models were found to behave differently giving varying recovery factors in a WAG simulation scheme. While the effect of irreversible hysteresis was studied, it was observed here that imbibition (stage I) and drainage (stage II) processes gave results that deviated from conventional hysteresis. Simulations were run with and without hysteresis for different three phase relative permeability models with different effects observed for the recovery factor. The results of this work show that a good understanding of the three phase relative permeability model in use is very important for a more robust reservoir simulation model. Also, the effect of irreversible hysteresis in WAG injection should be adequately modelled in order to obtain reliable results. Lastly, the results reveal the importance of optimum WAG ratio for maximizing oil recovery by preventing a gas tongue forming at the top of the reservoir and a water tongue forming at the bottom of the reservoir.

Publisher

SPE

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3