Using Distributed Volumetric Sources to Predict Production from Multiple-Fractured Horizontal Wells Under Non-Darcy-Flow Conditions

Author:

Amini Shahram1,Valkó Peter P.1

Affiliation:

1. Texas A&M University

Abstract

Summary The method of distributed volumetric sources (DVS) has been applied to predict gas production from a horizontal well with multiple transverse fractures in a bounded reservoir. Combining the quasianalytical DVS method, which provides us with the opportunity to predict pressure and production behavior of complex well/fracture configurations, with non-Darcy flow in the fracture enables us to calculate the optimum configuration in terms of the number and dimensions of fractures per well for a certain amount of proppant of a given type. The method is applied to an example case of a tight gas reservoir to maximize the production performance of this complex well/fracture configuration. Comparing results with and without inclusion of the non-Darcy effect in the fracture shows that a decrease in production occurs because of non-Darcy flow in all cases. However, a systematic screening of a realistic set of well/fracture configurations reveals that the detrimental effect of non-Darcy flow can be substantially compensated for by selecting the right number of fractures and shifting the fracture dimensions in favor of thicker fractures. While a simultaneous decrease in optimum lateral (and vertical) extension is necessary, it has limited effect on productivity. The simplicity, robustness, and small computational demand of the model allow seamless integration with external economic and operational constraints, providing a tool to screen and optimize a large set of possible configurations most suited for the development of economically marginal fields.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3