An Effective Model for Pipe Friction Estimation in Hydraulic Fracturing Treatments

Author:

Barree Robert David1,Conway Michael2,Gilbert John Victor1

Affiliation:

1. Barree & Assocs. LLC

2. Stim-Lab, Inc.

Abstract

Abstract An adequate model of pipe friction and fluid hydrostatic head is needed to allow understanding of bottomhole treating pressure trends during pumping. Models currently used by service providers appear to be inadequate, based on observation of field bottomhole treating pressure (BHP) plots. A new model is provided which has been extensively tested for gelled fluids, foams, and slick-water fracs. The model predictions are compared to direct measurements of BHP during typical high-rate treatments in various pipe sizes. Use of an adequate pipe friction model improves analysis of stimulation treating pressures and allows better decisions to be made regarding on-the-fly design changes and post-job interpretations of created fracture geometry and resulting conductivity. The paper presents a useful model for the estimation of pipe friction, slurry head, and surface treating pressure during hydraulic fracturing treatments. Introduction Interpretation of bottomhole treating pressure (BHTP) data is often an integral part of real-time and post-job fracture treatment diagnostics. Many people use plots or trend analysis of bottomhole pressure to make on-the-fly decisions regarding job design and execution. Inaccurate estimation of BHTP can lead to bad decisions and incorrect interpretation of fracture geometry or treatment behavior. Calculation of BHTP is comprised of two primary parts: hydrostatic head and pipe friction. The actual fracture treating pressure is further removed from the BHTP inside the wellbore by perforation friction and near-well pressure drop or "tortuosity". This paper does not address calculation of these two factors and focuses on the estimation of BHTP inside the pipe only. Equations are presented for straight water and oil, slick-water, linear polymer aqueous gels, crosslinked gels (both rapid and delayed crosslink systems), and N2 and CO2 foams. The method presented here is not expected to be a final solution to this complex problem. Matching observed bottomhole treating pressure data with the equations presented here points out the amount of variation in fluid properties that may occur during a job. It may not be possible to predict an accurate BHTP "on the fly" but application of a consistent method is expected to give better trend analysis. At worst, changes in calculated BHTP induced by surface input changes can be used to infer errors in the model inputs and improve overall prediction accuracy. Fluid Density and Hydrostatic Head Estimates For N2 and CO2 foam and assist treatments the estimation of "foam" fluid density during the job is a necessary starting point. Data are available from the National Institute of Standards (NIST) and other sources to characterize N2 and CO2 density as functions of temperature and pressure. Complex equations of state are also available that provide accurate estimates of these properties. For hydraulic fracturing operations a simpler method is desirable for rapid estimation of density while pumping. Equations 1 and 2 give useful estimates of CO2 and N2 density, in units of g/cm3, respectively. In the equations the temperature is in units of degrees Fahrenheit and pressure is in lbf/in2 (psi).

Publisher

SPE

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Delineating and Quantifying the Hydraulic Fracturing Energy System;Day 2 Tue, April 18, 2023;2023-04-17

2. Processes of Screenout Development and Avoidance;Day 2 Wed, February 02, 2022;2022-01-25

3. Fracturing Pressure Analysis;Hydraulic Fracturing: Fundamentals and Advancements;2019

4. Integration of microseismic data, completion data, and production data to characterize fracture geometry in the Permian Basin;Journal of Natural Gas Science and Engineering;2018-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3