Integrated Mechanical Earth Modeling for Predicting Sand Production: A Case Study

Author:

Al-Ameri Aymen1

Affiliation:

1. Iraq Ministry of Oil

Abstract

Summary Sand production is a serious problem in oil and gas wells, and one of the main concerns of production engineers. This problem can damage downhole equipment and surface production facilities. This study presents a sand production case and quantifies sanding risks for an oil field in Iraq. The study applies an integrated workflow of constructing 1D Mechanical Earth Modeling (MEM) and predicting the sand production with multiple criteria such as shear failure during drilling, B index, and critical bottomhole pressure (CBHP) or critical drawdown pressure (CDDP). Wireline log data were used to estimate the mechanical properties of the formations in the field. The predicted sand production propensity was validated based on the sand production history in the field. The interpretation results of some wells anticipated in this study showed that when a shear failure occurs during drilling, the B index is around 2 × 104 MPa or less and the CBHP is equal to the formation pore pressure. For this case, sand control shall be carried out in the initial stage of production. On the other hand, when the shear failure does not exist, the B index is always greater than 2 × 104 MPa, and the CBHP is mostly less than the formation pore pressure. In this case, implementing sand control methods could be postponed as the reservoir pressure undergoes depletion. However, for the anticipated field, sand control is recommended to be carried out in the initial stage of well production even when the CBHP is less than the formation pore pressure since sanding will be inevitable when the reservoir pressure depletes to values close to the initial reservoir pressure. The tentative evaluation of the stress regime showed that a normal fault could be the stress regime for the formations. For a normal fault stress regime, the study explained that when the reservoir permeability is isotropic, an openhole vertical wellbore has less propensity for sand production than a horizontal wellbore. Moreover, when the wellbore azimuth is in the direction of the minimum horizontal stress, the CBHP will be lower than in any other azimuth, and sanding will take place at higher wellbore inclination angles. For the anticipated field, because of the casedhole well completion and the anisotropic reservoir permeability, a horizontal well drilled in the direction of minimum horizontal stress with oriented perforation in the direction of maximum horizontal stress is an alternative method for controlling sand production.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CALIBRATION OF A ONE-DIMENSIONAL MECHANICAL EARTH MODELS USING GEOMETRIC APPROXIMATION OF BOREHOLE BREAKOUTS;Bulletin of the Tomsk Polytechnic University Geo Assets Engineering;2023-07-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3