A New Approach To The Modelling Of Steam-Assisted Gravity Drainage

Author:

Butler R.M.1

Affiliation:

1. University of Calgary

Abstract

Abstract A method for predicting the bitumen drainage from around a spreading steam chamber above a horizontal well is described. The interface is treated as a number of segments. Oil drainage for each segment is calculated for successive time steps and these rates are used to calculate the displacement of the interface. The change in accumulated heat penetration is estimated using an approximate differential equation. The calculation is repeated in a cyclic manner. A continuous heat balance is calculated. It is shown that the fraction of the injected heat remaining in the chamber increases with the steam pressure. However, this advantage is offset by the larger amount of heat required to raise a unit volume of the reservoir to steam temperature. Higher steam pressure gives faster production and the oil steam ratio does not change much. A major factor in determining the efficiency of the process is the horizontal spacing between wells in a confined pattern; closer spacing gives better oil to steam ratios. The spreading of an unconfined steam chamber is controlled by factors affecting the steam flux al the upper edges of the steam chamber. Non-condensable gas may be important; experimental work on factors affecting the spreading is planned. Introduction The main problem in the recovery of bitumen by in-situ methods is that bitumen is essentially immobile at reservoir conditions. This can be overcome by heating the bitumen or by diluting it with solvent. A major problem for the petroleum engineer in the development of either of these approaches is the definition of a suitable means for contacting the heat or the solvent with the bitumen in a systematic and complete manner. For example, attempts to inject steam into a reservoir to heat the bitumen are generally unsuccessful unless the pressure is raised to the level at which fracturing occurs. Steam injection above fracturing pressure, followed by production from the same injection well, has been successful in Alberta and elsewhere and is the basis for recently announced commercial projects(1, 2) Such projects are much more economic with thick reservoirs than with thin ones because a smaller fraction of the injected eat is lost to the overburden. It seems likely that in thick reservoirs most of the oil is produced by gravity drainage even in the conventional steam-stimulated approach. This was first pointed out by Doscher(3). Although the heat economy for steam stimulation can be reasonably satisfactory, the recovery of the oil is limited to about 15 – 20% because of the tendency for steam to bypass. The present paper is concerned with the production of bitumen or heavy oils by gravity drainage from around a growing steam chamber; it follows others which were written by the author and his former colleagues at Es50(4–7). The process and the theory differ from those described in the literature for the production of conventional oils by gravity drainage. The difference is that in steam-assisted gravity drainage it is only the oil close to the perimeter of the steam chamber which is mobile whereas in the drainage of conventional petroleum under conditions of essentially constant temperature, all of the oil within the reservoir is mobile.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3