Lessons Learned From Alkali/Surfactant/Polymer-Flooding Field Tests in China

Author:

Guo Hu1,Li Yiqiang1,Kong Debin1,Ma Ruicheng1,Li Binhui1,Wang Fuyong1

Affiliation:

1. China University of Petroleum, Beijing

Abstract

Summary Although the alkali/surfactant/polymer (ASP) flooding technique used for enhanced oil recovery (EOR) was put forward many years ago, it was not until 2014 that it was first put into practice in industrial applications with hundreds of injectors and producers in the Daqing Oil Field in China. In this study, 30 ASP-flooding field tests in China were reviewed to promote the better use of this promising technology. Up to the present, ASP flooding in the Daqing Oil Field deserves the most attention. Alkali type does affect the ASP-flooding effect. Strong alkali [using sodium hydroxide (NaOH)] ASP flooding (SASP) was given more emphasis than weak alkali [using sodium carbonate (Na2CO3)] ASP flooding (WASP) for a long time in the Daqing Oil Field because of the lower interfacial tension (IFT) of the surfactant and the higher recovery associated with NaOH than with Na2CO3. Other ASP-flooding field tests completed in China all used Na2CO3. With progress in surfactant production, a recent large-scale WASP field test in the Daqing Oil Field produced an incremental oil recovery nearly 30% higher than most previous SASP recoveries and close to the value of the most-successful SASP test. However, the most-successful SASP test was partly attributed to the weak alkali factor. Recent studies have shown that the WASP incremental oil recovery factor could be as good as that of SASP but with much-better economic benefits. Screening of surfactant by IFT test is very important in the ASP-flooding practice in China. Whether dynamic or equilibrium IFT should be selected as criteria in surfactant screening is still in dispute. Many believe the equilibrium IFT is more important than the dynamic IFT in terms of the displacement efficiency; thus, it is better to choose a lower dynamic IFT when the equilibrium IFT meets the 10−3 order-of-magnitude requirement. However, it is impossible for many surfactants to form ultralow equilibrium IFT. Because of the low acid value of the Daqing crude oil, the asphaltene and resin components play a very important role in reducing the oil/water IFT and asphaltene is believed to be more influential, although more work is required to resolve this controversial issue. Whether polymer viscoelasticity can reduce the residual oil saturation is still a matter of debate. Advances in surfactant production and in the overcoming of scaling and produced-fluid-handling challenges form the foundation of the industrial application of ASP flooding. Further work is advised on the emulsification effect of ASP flooding. According to one field test, the EOR routine should be selected depending on consideration of the residual oil type to decide whether to increase the sweep volume and/or displacement efficiency. The micellar flooding failure in one ASP field test in China has led all subsequent field tests in China to choose the “low concentration, large slug” technical route instead of the “high concentration, small slug” one. ASP flooding can increase oil recovery by 30% at a cost of less than USD 30/bbl; thus, this technique can be used in response to low-oil-price challenges.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3