Effect of Low-Concentration Hydrochloric Acid on Properties of Shale Rocks

Author:

Carpenter Chris1

Affiliation:

1. JPT Technology Editor

Abstract

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 165689, ’Effect of Low-Concentration Hydrochloric Acid on the Mineralogical, Mechanical, and Physical Properties of Shale Rocks,’ by Samiha Morsy, SPE, C.J. Hetherington, and J.J. Sheng, Texas Tech University, prepared for the 2013 SPE Eastern Regional Meeting, Pittsburgh, Pennsylvania, USA, 20-22 August. The paper has not been peer reviewed. Matrix acidizing is commonly used as a preflush to the hydraulic-fracturing stimulation of shale formations. The process dissolves sediments and mud solids that inhibit the permeability of the rock, enlarging the natural pores of the reservoir and stimulating flow of hydrocarbons. In this paper, the mineralogical and physical responses to matrix acidizing of several important North American shale formations are evaluated. Introduction A few studies have quantified the effect of hydrochloric acid (HCl) matrix acidizing on mineralogical and physical properties of shale formations. However, less is known about the development of conductivity and the acid concentrations necessary to optimize conductivity and, by extension, the impact on production and rock stability. The mechanical properties of shale formations vary as a function of mineralogy, with shales rich in brittle minerals such as quartz and carbonates having higher Young’s- modulus values. Increases in the clay content, total organic carbon (TOC) content, and porosity may lower the Young’s- modulus values. Therefore, dissolution of brittle minerals, while improving short-term conductivity, may lower long-term shale rock stability. HCl reacts rapidly with calcite [Ca2 (CO3)2] and, to a lesser extent, with dolomite [CaMg(CO3)2], and it is predicted that the main impact of HCl on shale will vary as a function of how much calcite is dissolving, which, in turn, is controlled by acid strength, temperature, and pressure. Shale Samples Eagle Ford shale reservoir core samples and outcrop samples from the Mancos, Barnett, and Marcellus shale formations with contrasting assemblages—ranging from the calcite-/clay-rich, quartz-poor Eagle Ford to the quartz-/ illite-rich, carbonate-poor Mancos—were used in this study. The Eagle Ford shale contains the greatest proportion of carbonate, but the absolute volumes of carbonate vary systematically. At deeper structural levels, such as those exploited in south Texas, there is upward of 70% carbonate by volume. With progression toward the northwest, the clay content increases, and the formation is exploitable at shallower depths. The high percentage of carbonate makes it more brittle and fracturable. The Mancos is predominately steel-gray sandy shale but includes stringers of earthy coal, impure limestones, and many thin beds of fine-grained yellow and brown sandstone that are chiefly composed of subangular and angular quartz grains cemented by lime. The Barnett is a very brittle gasbearing siltstone. Most Barnett shales are siliceous mudstones, rich in quartz, and may be considered argillaceous siltstones. Some of the Barnett lithofacies are insensitive to acid because of low volumes of carbonate, but their clay- mineral assemblage may be moderately sensitive to fresh water. Other litho facies have higher abundances of carbonate and are therefore more reactive to matrix acidizing. The Marcellus formation is dominated by black shale with some interspersed limestone beds. Bedding is well developed and often splits along bedding planes. Pyrite is also relatively common in this shale.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3