Improved Predictability of In-Situ-Combustion Enhanced Oil Recovery

Author:

Kovscek A.R.. R.1,Castanier L.M.. M.1,Gerritsen M.G.. G.1

Affiliation:

1. Stanford University

Abstract

Summary In-situ combustion (ISC) possesses advantages over surface-generated steam injection for deep reservoirs in terms of wellbore heat losses and generation of heat above the critical point of water. ISC also has dramatically lower requirements for water and natural gas, and potentially a smaller surface footprint, in comparison with steam. In spite of its apparent advantages, prediction of the likelihood of successful ISC is unclear. Conventionally, combustion tube tests of a crude oil and rock are used to infer that ISC works at reservoir scale and estimate the oxygen requirements. Combustion tube results may lead to field-scale simulation on a coarse grid with upscaled Arrhenius reaction kinetics. As an alternative, we suggest a comprehensive workflow to predict successful combustion at the reservoir scale. The method is derived from experimental laboratory data and simulation models at all scales. In our workflow, a sample of crushed reservoir rock or an equivalent synthetic sample is mixed with water/brine and the crude-oil sample. The mixture is placed in a kinetics cell reactor and oxidized at different heating rates. An isoconversional method is used to estimate kinetic parameters vs. temperature and combustion characteristics of the sample. Results from the isoconversional interpretation provide a first screen of the likelihood that a combustion front is propagated successfully. Then, a full-physics simulation of the kinetics cell experiment is used to predict the flue gas composition. The model combines a detailed pressure/volume/temperature (PVT) analysis of the multiphase system and a multistep reaction model. A mixture identical to that tested in the kinetics cell is also burned in a combustion tube experiment. Temperature profiles along the tube, as well as the flue gas compositions, are measured during the experiment. A high-resolution simulation model of the combustion tube test is developed and validated. Finally, the high-resolution model is used as a basis for scaling up the reaction model to field dimensions. Field-scale simulations do not use Arrhenius kinetics. As a result, significant stiffness is removed from the finite-difference simulation of the governing equations. Preliminary field-scale simulation shows little sensitivity to gridblock size, and the computational work per timestep is much reduced.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3