Determination of Performance of Multiple-Fracture Horizontal Well by Incorporating Fracture-Fluid Leakoff

Author:

Asadi Mohammad Bagher1,Ameri Mohammad Javad2,Amini Shahram3,Zendehboudi Sohrab1

Affiliation:

1. Memorial University

2. Amirkabir University of Technology

3. Dana Energy

Abstract

Summary Multiple-fracture-horizontal-well (MFHW) technology plays a crucial role in production from less economically attractive reservoirs, through enhancing the well productivity. The formation around the fracture might be damaged considerably during fracturing processes because of the fracture-fluid leakoff into the reservoir. Different attempts have been made to achieve an optimal design for MFHWs; however, the effect of fracture-fluid leakoff has been neglected in most of these research investigations, leading to unrealistic and inaccurate results. This study aims to fill this knowledge gap. A new mathematical approach is introduced to evaluate the effect of the fracture-fluid-leakoff phenomenon on the fracture characteristics during hydraulic fracturing. The unified-fracture-design (UFD) concept is used in this research work to optimize the productivity of MFHWs where the direct boundary-element method (DBEM) is applied. The distributed-volumetric-sources (DVS) method, which offers a semianalytical response of a reservoir to closed outer boundaries with respect to a source, is also extended, and the results obtained from these two different techniques are compared. Then, the proposed methodology is applied to a synthetic case study to evaluate the influence of fracture-fluid leakoff on the productivity index (PI) and to obtain the fracture dimensions that result in the optimal productivity. It is concluded that leakoff leads to influx-pattern variation. Also, it is found that the optimal fracture for the leakoff case is shorter and wider at a constant proppant number, in contrast to the case without a leakoff event. This study proposes an accurate and reliable approach for productivity determination of MFHWs that can assist the petroleum industry to optimize hydraulic-fracturing operations.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3