Reaction of Gelled Acids With Calcite

Author:

Nasr-El-Din H. A.1,Al-Mohammed A. M.1,Al-Aamri A. D.1,Al-Fuwaires O.1

Affiliation:

1. Saudi Aramco

Abstract

Summary Hydrochloric (HCl) acid is used to stimulate carbonate formations in both matrix and fracturing treatments. However, the reaction rate of the acid with calcite is fast. In addition, the viscosity of regular HCl solutions is relatively low. Acid-soluble polymers are usually added to the acid to increase its viscosity, which is needed to enhance acid diversion during matrix acidizing and reduce acid leakoff rate during acid fracturing. Gelled acids are extensively used in matrix and acid-fracturing treatments performed in carbonate formations. However, a few studies examined the impact of these polymers on the reaction of HCl acids with calcite. This paper used a rotating disk instrument to measure the dissolution rate of calcite by use of gelled acids. Measurements were conducted over a temperature range of 25 to 65°C, a pressure of 1,000 psi, and rotational speeds of 100 to 1,000 rpm. Acid formulations that are typically used in the field were examined. Polymer concentration was varied from 0.5 to 2 wt%. The apparent viscosity of the gelled acid was measured with a Brookfield viscometer. Measurements were done for the same solutions tested with the rotating disk instrument. The temperature was varied from 25 to 100°C, while the pressure was maintained at 300 psi. The shear rate was varied from 57 to 1,700 s−1. Evidence of reverse and toroidal flows was noted for the first time by examining the etching patterns of the reacted disks. The etching pattern on the surface of the disk depended, among other factors, on the disk rotational speed and polymer concentration. There was a significant increase in the apparent viscosity of gelled acids and a major decrease in the dissolution rate as the polymer concentration was increased from 0.5 to 1.5 wt%. The reaction of gelled acids with calcite was controlled by a surface reaction at 25°C, and by mass transfer at 65°C. Temperature increased the dissolution rate of calcite at all conditions examined. It did also reduce the viscosity of the gelled acid, which affected the way the acid reacted with calcite.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3