Data-Driven Steam Optimization for SAGD

Author:

Prakash Jagadeesan1,Sibaweihi Najmudeen2,Patel Rajan G.2,Trivedi Japan J.2

Affiliation:

1. Anna University

2. University of Alberta

Abstract

AbstractSince decades, steam-assisted oil recovery processes have been successfully deployed in heavy oil reservoirs to extract bitumen/heavy oil. Current resource allocation practices mostly involve reservoir model-based open loop optimization at the planning stage and its periodic recurrence. However, such decades-old strategies need a complete overhaul as they ignore dynamic changes in reservoir conditions and surface facilities, ultimately rendering heavy oil production economically unsustainable in the low-oil-price environment. Since steam supply costs account for more than 50% of total operating costs, a data-driven strategy that transforms the data available from various sensors into meaningful steam allocation decisions requires further attention.In this research, we propose a purely data-driven algorithm that maximizes the economic objective function by allocating an optimal amount of steam to different well pads. The method primarily constitutes two components: forecasting and nonlinear optimization. A dynamic model is used to relate different variables in historical field data that were measured at regular time intervals and can be used to compute economic performance indicators (EPI). The variables in the model are cumulative in nature since they can represent the temporal changes in reservoir conditions. Accurate prediction of EPI is ensured by retraining the regression model using the latest available data. Then, predicted EPI is optimized using a nonlinear optimization algorithm subject to amplitude and rate saturation constraints on decision variables i.e., the amount of steam allocated to each well pad.The proposed steam allocation strategy is tested on 2 well pads (each containing 10 wells) of an oil sands reservoir located near Fort McMurray in Alberta, Canada. After an exploratory analysis of production history, an output error (OE) model is built between logarithmically transformed cumulative steam injection and cumulative oil production for each well pad. Commonly used net-present-value (NPV) is considered as EPI to be maximized. Optimization of the objective function is subject to distinct operating conditions and realistic constraints. By comparing results with field production history, it can be observed that optimum steam injection profiles for both well pads are significantly different than that of a field. In fact, the proposed algorithm provides smooth and consistent steam injection rates, unlike field injection history. Also, the lower steam-oil ratio is achieved for both well pads, ultimately translating into ∼19 % higher NPV when compared with field data.Inspired from state-of-the-art control techniques, the proposed steam allocation algorithm provides a generic data-driven framework that can consider any number of well pads, EPIs, and amount of past data. It is computationally inexpensive as no numerical simulations are required. Overall, it can potentially reduce the energy required to extract heavy oil and increase the revenue while inflicting no additional capital cost and reducing greenhouse gas emissions.

Publisher

SPE

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3