Rock Failure Under Dynamic Loading Conditions

Author:

Burdine N.T.

Abstract

BURDINE, N.T., SOCONY MOBIL OIL CO., INC., DALLAS, TEX Abstract The present investigation is concerned with the cumulative damage to rock samples when exposed to cyclic stresses under various loading conditions. Information on the response of rocks to repetitive deformational forces is an essential prerequisite to an understanding of the fundamentals of drilling. Using a laboratory designed and constructed dynamic-stress apparatus, preliminary data were obtained on cylindrical rock samples. The experiments consist of measuring the number of cycles to failure for a given axial load ( static plus dynamic). Data were obtained for various confining and pore pressures, pore fluids (air and water), frequencies of stress application and loading procedures. The results are related to failure theories and dynamic fatigue properties of other materials. Introduction In most conventional and new drilling processes, repetitive forces are applied to the bottom of the borehole. Furthermore, in hard-rock drilling the number of applications of the forces to a particular section of rock may become excessively large. The present investigation is concerned with the cumulative damage to rocks when exposed to cyclic stresses under various loading conditions. It is believed that the experiments will lead to a better understanding of the mechanical response of rocks to particular deformational forces and to a more efficient drillingprocedure.Thepresent investigation is the initial part of a general study of the behavior of inelastic materials under static and dynamic conditions, including both theoretical and experimental studies. SURVEY OF FAILURE THEORIES OF MATERIALS Few, even phenomenological, theories on rock deformation have been established because the state of knowledge of flow, fracture and strength of rocks is largely empirical. Most of the theories that do exist were originally formulated for other materials. HOOKE'S LAW The state of stress in continuous media is completely determined by the stress tensor and the state of deformation by the strain tensor . In the linear theory of elasticity the generalized Hooke's law is ..........................(1) where the coefficients are the components of the elasticity tensor. For homogeneous and isotropic conditions the number of independent coefficients reduce to two, and Eq. 1 becomes ..................(2) in which and are Lame's constants; is the kronecker delta; and is the dilation. This simplified version of Hooke's law has been used quite extensively in geophysical research where most of the information about the mechanical properties of the earth have been obtained. However, it has only limited application in rock fatigue studies. MATERIAL BEHAVIOR Many solids obey Hooke's law at small stresses, but for higher stresses a hysteretic effect occurs due to temporary or permanent residual deformation of the solid (inelastic deformation). Such deviations in mechanical behavior exist in varying degrees in different classes of materials. Most elastic materials have a microscopic heterogeneity due either to random distribution of anisotropic particles, or due to some preferred particle orientation, or both. Other materials are quite grossly heterogeneous. And the method of formation, particularly in rocks, oftentimes creates residual stress concentrations which have complicated states of imperfect equilibrium. Also, the thermal effects resulting from structural behavior give rise to nonuniform temperature distributions and the degradation of mechanical energy. When such bodies are exposed to certain large loading conditions, the inelastic behavior is intensified so strongly that the deformation, normally brittle, becomes ductile. SPEJ P. 1^

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3