Waterflood Forecasting for More Accurate EOR Performance Evaluation

Author:

Behzadi Hamid1,Hampton David1

Affiliation:

1. Occidental Petroleum Corp.

Abstract

Abstract This paper presents modeling CO2 enhanced oil recovery (EOR) flood performance through the application of dimensionless scaling for both forecasting and surveillance purposes. While the methodology has been used successfully for West Texas CO2 floods for more than two decades, a recent modification in the process enhances the certainty of forecasted tertiary response based on simulation and analog results. The primary focus of this paper is on how this new approach improves the use of analog or observed production history to develop more reliable forecasts for EOR processes. Business units favor analog methods since they are fast, adaptable and explicit. Analog tertiary production response is the incremental oil production over an estimated base waterflood oil recovery. The original formulation, published in a different paper (Simmons and Falls 2005), for the underlying base waterflood was modeled using an exponential decline throughput-based regression fit of historical pattern based performance, but in effective waterfloods, many times the oil production approaches a harmonic decline. In this paper, the impact of waterflood maturity level on analog dimensionless analysis is demonstrated by both simulation and multiple historical waterflood scenarios across the Permian Basin. The authors offer an improved approach to predict base waterflood and consequently tertiary oil recovery response. This method integrates multiple waterflood forecast methods, e.g., hyperbolic and dimensionless. The new approach results in a reduction in difference between simulation and analog forecasts. Also, the estimated final tertiary response using this method converges closer for various San Andres CO2 floods started at different times in West Texas. Finally, the modified analog response is compared against simulation.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3