Innovative Cementing Solution for Long-Term Steam Injection Well Integrity

Author:

DeBruijn G..1,Loiseau A..1,Chougnet-Sirapian A..1,Piot B..1,Pershikova E..1,Khater W..1,Evoy K..2,Wilson G..2

Affiliation:

1. Schlumberger

2. StatoilHydro Canada Ltd.

Abstract

Abstract Operators involved in the recovery of hydrocarbons from heavy-oil reservoirs often face the problem of maintaining well integrity in steam-injection wells. A significant portion of these wells suffer various forms of leaks and in the most severe case complete steam breakthrough to surface. Throughout the life of heavy-oil wells, cement material degradation and stresses in the cement sheath induced by extreme temperature cycling result in severe mechanical damage and ultimate failure of the cement sheath. These problems motivate different operators to explore new cementing technologies that are capable of achieving reliable long-term zonal isolation in these extreme conditions. The main challenge for operators is to design thermally stable cement with mechanical properties sufficient to withstand stresses induced by the large temperature changes. This paper describes the development of a new cement system, which is stable, strong, impermeable and flexible up to a temperature of at least 350°C(650°F), corresponding to the maximum steam injection temperature. Depending on the curing temperature this new cement system provides low Young's modulus of 1,800 to 4,000 MPa while maintaining excellent compressive and tensile strengths compared to cements currently used in the oilfield industry. Aging the cement system for 6 months at steam temperatures demonstrates the stability of the set material properties, including maintaining a low permeability. Field trials in North America show that this new cement system can be easily implemented into standard cementing operations using conventional equipment. Cement evaluation logs after cement operations confirm that excellent zonal isolation and wellbore integrity are readily achieved. By keeping adequate strength and flexibility, this new cement system reduces the risk of cement sheath failure and steam migration throughout the life of these steam-injection wells. It provides a long-term well integrity solution for any well exposed to very large temperature increase after the cement initial set, such as in fields exposed to steam temperatures.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3