Abstract
Summary
This study presents a new way to model high secondary porosity, mainly vuggy porosity, in naturally fractured reservoirs. New solutions are presented for two cases, one in which there is no primary flow through the vugs (which is an extension of the Warren and Root model) and one in which the dissolution process of pore throats has created an interconnected system of vugs and caves. In both cases, there is an interaction between matrix, vug, and fracture systems. New insights are provided.
Both pressure and production responses during transient and boundary-dominated flow periods are explored. In transient well tests, for the case in which there is no primary flow through the vugs, a change of slope could be present during the transition period. Thus, this study shows that slope ratios of 2:1 of an earlyor late-time segment vs. a transition segment do not necessarily imply transient interaction between matrix and fractures. It is also shown that the presence of vugs and caves may have a definitive influence on decline-curve and cumulative production behaviors; therefore, it is necessary to incorporate vuggy porosity in the process of type-curve match.
Finally, the use of the methodology obtained in this work is illustrated with synthetic and field examples.
Publisher
Society of Petroleum Engineers (SPE)
Subject
Geology,Energy Engineering and Power Technology,Fuel Technology
Cited by
83 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献