Finite Element Simulation of Downhole Stresses in Deep Gas Wells Cements

Author:

Nabipour A..1,Joodi B..2,Sarmadivaleh M..1

Affiliation:

1. Curtin University of Technology

2. NIOC

Abstract

Abstract Deep gas reservoirs are going to play more important roles in meeting growing demand of natural gas throughout the world. Due to extreme conditions of downhole stresses, pressure and temperature that occur in deep gas wells, maintaining cement mechanical integrity and zonal isolation have become critical concerns of industry during drilling, completion, and production of such wells. Cement sheath is expected to provide a flawless annular seal between casing and formation along the wellbore. However; cement failure cases which are being reported regularly show that there is still need for understanding extreme downhole conditions and the behavior of cement sheath experiencing such an environment. Although Uniaxial Compressive Strength (UCS) of cement is commonly regarded as the most important mechanical property of cement, recent theoretical and experimental results show that other mechanical properties of cement can be even more determinative in its failure. In this study, Finite Element Method (FEM), a widely-used robust numerical tool, is used for simulation of the downhole environment by modeling temperature, pressures, stresses, downhole materials and their interactions. Using this approach magnitude, direction and type of induced stresses in casing, cement, and formation have been determined. Furthermore; a series of sensitivity analyses was performed to reveal the effects of variation of various parameters such as casing internal pressure, differential horizontal stress and casing eccentricity, on the induced stresses in the cement sheath. Radial, tangential and von Mises stress profiles in the deep gas wells cements were investigated. Furthermore, the effect of casing internal pressure, differential horizontal stress and casing eccentricity were studied in the model. Results show that deep gas wells’ cements experience extreme amounts of thermal and mechanical stresses and special consideration is required in cement selection.

Publisher

SPE

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3