Proppant Sieve Distribution - What Really Matters?

Author:

Barree R. D.1,Duenckel R. J.2,Hlidek B. T.2

Affiliation:

1. Barree & Assocs.

2. Stim-Lab Inc.

Abstract

Abstract Two primary criteria describe proppants utilized in fracturing: type (e.g. - sand) and mesh size (e.g. - 30/50), where mesh size refers to the number of wires per inch in the standard U. S. sieve screens. For a proppant to meet API RP-19C (API, 2006) specifications, 90% of the material sample (by weight) must fall between the screens of the largest and smallest specified mesh size. These size specifications provide the user of proppants a method of choosing a proppant, and comparing products from different suppliers, but still allows a wide variance in particle size within each sieve distribution. Laboratory conductivity tests demonstrate that limiting sieve distribution to standard sizing per API specifications is not a requirement to obtain adequate conductivity performance, or a sufficient descriptor of proppant performance. The industry has for the most part, limited its choices of proppants to API sizing criteria. It should be noted however, that within each standard mesh range (40/70, 30/50, 20/40, etc.) there is allowed a doubling of size from the smallest to largest particle diameter. There can be a significant difference in size distribution and performance between two proppants, both of which meet the API specification for a given mesh distribution. The difference in distribution can be recognized by determining the median particle diameter of the proppant sample. API RP-19C defines the median diameter as the fiftieth mass percentile (d50) in the distribution. Thousands of conductivity tests have demonstrated a very strong correlation between median particle diameter and conductivity for each specific type of proppant. The correlation provides a methodology of predicting the conductivity of differing mesh distributions within a specific standard mesh size designation, or for mixed distributions of various particle sizes. This correlation can be successfully applied to regional, non-standard, sand samples. The ramification of the correlation of median particle diameter to conductivity suggests that standard mesh distributions are somewhat arbitrary and that using non-standard size distributions is not necessarily a negative. Recognizing that sieving capacity is often a bottleneck to output, choosing to provide non-standard sizing may lead to greater production for a processing facility. Given potential proppant supply constraints in the industry, such a shift in proppant supply may lead to significantly improved sand availability and cost benefits to operators.

Publisher

SPE

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3