Analysis of Production Data for 2007/2008 Mallik Gas Hydrate Production Tests in Canada

Author:

Kurihara Masanori1,Sato Akihiko1,Funatsu Kunihiro1,Ouchi Hisanao1,Yamamoto Koji2,Numasawa Masaaki3,Ebinuma Takao4,Narita Hideo4,Masuda Yoshihiro5,Dallimore Scott R.6,Wright Fred6,Ashford Douglas7

Affiliation:

1. Japan Oil Engineering Co., Ltd.

2. Japan Oil, Gas and Metals National Corporation

3. Japan Petroleum Exploration Co., Ltd.

4. National Institute of Advanced Industrial Science and Technology

5. The University of Tokyo

6. Natural Resources Canada

7. Consultant

Abstract

Abstract The methane hydrate (MH) production tests were conducted using the depressurization method in the JOGMEC/NRCan/Aurora Mallik production program in April 2007 and in March 2008. In addition to attaining the first and the only successful methane gas production to the surface from a MH reservoir by depressurization in the world, various data such as wellhead/bottomhole pressure, temperature, gas and water flow rates and the temperature along the casing measured by Distributed Temperature Sensing (DTS) systems were acquired during these tests. The flow rates of gas and water from the reservoir sand face were then estimated by the comprehensive analysis of these data. This paper clarifies the details of the estimation of gas and water flow rates based on these data, for the first time after the 2008 winter test. In 2007, a certain amount of gas and water were produced from a 12 m perforation interval in one of the major MH reservoirs at the Mallik site in Canada, by reducing the bottomhole pressure down to about 7 MPa. However, because of the irregular (on-off) pumping operations due probably to the excessive sand production, the produced gas was not directly delivered to the surface via the tubing, but was accumulated at the top of the casing. Hence, the gas production rate was calculated based on the continuously monitored bottomhole and casing head pressure. Since the produced water was injected into the aquifer located below the MH reservoir, it was impossible to directly measure the water pumping rate. The pumping rate and water production rates were accurately estimated by matching the bottomhole temperature through the numerical simulation using a wellbore model. In 2008, much larger and longer gas production was accomplished with a stepwise reduction of the bottomhole pressure down to about 4.5 MPa, preventing sands from flowing into the wellbore by the screen. In this test, both the gas and water were delivered to the surface, which enables the estimation of the gas and water flow rates from the reservoir sand face as well as liquid level in casing based on the monitored parameters. Investigating the production performances thus estimated, it was inferred what really happened in the reservoir during the tests. These insights must be beneficial for future exploration and development planning for MH resources.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3