Experimental Study of Natural Ions and Rock Interactions for Seawater Breakthrough Percentage Monitoring during Offshore Seawater Flooding

Author:

Wang Yanqing1,Li Xiang1,Lu Jun2

Affiliation:

1. University of Tulsa

2. University of Tulsa (Corresponding author)

Abstract

Summary Seawater breakthrough percentage monitoring is critical for offshore oil reservoirs because seawater fraction is an important parameter for estimating the severity of many flow assurance issues caused by seawater injection and further developing effective strategies to mitigate the impact of those issues on production. The validation of using natural ions as a tracer to calculate the seawater fraction was investigated systematically by studying the natural chemical composition evolution in porous media using coreflood tests and static bottle tests. The applicable range of ions was discussed based on the interaction between ion and rock. The barium sulfate reactive model was improved by integrating interaction between ions and rock as well as fluid flow effect. The results indicate that chloride and sodium interact with rock, but the influence of the interaction can be minimized to a negligible level because of the high concentrations of chloride and sodium. Thus, chloride and sodium can be used as conservative tracers during the seawater flooding process. However, adsorption/desorption may have a large influence on chloride and sodium concentrations under the scenario that both injection water and formation water have low chloride and sodium content. Bromide shows negligible interaction with rock even at low concentrations and can be regarded as being conservative. The application of a barium and sulfate reaction model in coreflood tests does not work as well as in bottle tests because fluid flow in porous media and ion interaction with rock is not taken into account. Although sulfate and barium adsorption on clay is small, it should not be neglected. The barium sulfate reaction model was improved based on the simulation of ion transport in porous media. Cations (magnesium, calcium, and potassium) are involved in the complicated cation-exchange process, which causes large deviation. Therefore, magnesium, calcium, and potassium are not recommended to calculate seawater fraction. Boron, which exists as anions in formation water and is used as a conservative tracer, has significant interactions with core matrix, and using boron in an ion tracking method directly can significantly underestimate the seawater fraction. The results give guidelines on selecting suitable ions as tracers to determine seawater breakthrough percentages under different production scenarios.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3