Effects of Rate, Temperature, and Solvent Type on Vapor/Oil Gravity Drainage (VOGD) in Fractured Reservoirs

Author:

Anand Neha1,Tang Brandon1,Nguyen Bradley (Duong)1,Sie Chao-yu1,Verlaan Marco2,Castellanos Diaz Orlando2,Nguyen Quoc P.1

Affiliation:

1. University of Texas at Austin

2. Shell Canada

Abstract

Summary Application of thermal and solvent enhanced-oil-recovery (EOR) technologies for viscous heavy-oil recovery in naturally fractured reservoirs is generally challenging because of low permeability, unfavorable wettability and mobility, and considerable heat losses. Vapor/oil gravity drainage (VOGD) is a modified solvent-only injection technology, targeted at improving viscous oil recovery in fractured reservoirs. It uses high fluid conductivity in vertical fractures to rapidly establish a large solvent/oil contact area and eliminates the need for massive energy and water inputs, compared with thermal processes, by operating at significantly lower temperatures with no water requirement. An investigation of the effects of solvent-injection rate, temperature, and solvent type [n-butane and dichloromethane (DCM)] on the recovery profile was performed on a single-fracture core model. This work combines the knowledge obtained from experimental investigation and analytical modeling using the Butler correlation (Das and Butler 1999) with validated fluid-property models to understand the relative importance of various recovery mechanisms behind VOGD—namely, molecular diffusion, asphaltene precipitation and deposition, capillarity, and viscosity reduction. Experimental and analytical model studies indicated that molecular diffusion, convective dispersion, viscosity reduction by means of solvent dissolution, and gravity drainage are dominant phenomena in the recovery process. Material-balance analysis indicated limited asphaltene precipitation. High fluid transmissibility in the fracture along with gravity drainage led to early solvent breakthroughs and oil recoveries as high as 75% of original oil in place (OOIP). Injecting butane at a higher rate and operating temperature enhanced the solvent-vapor rate inside the core, leading to the highest ultimate recovery. Increasing the operating temperature alone did not improve ultimate recovery because of decreased solvent solubility in the oil. Although with DCM, lower asphaltene precipitation should maximize the oil-recovery rate, its higher solvent (vapor)/oil interfacial tension (IFT) resulted in lower ultimate recovery than butane. Ideal density and nonideal double-log viscosity-mixing rules along with molecular diffusivity as a power function of oil viscosity were used to obtain an accurate physical description of the fluids for modeling solvent/oil behavior. With critical phenomena such as capillarity and asphaltene precipitation missing, the Butler analytical model underpredicts recovery rates by as much as 70%.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3