Full Scale Measurements of Cyclic Bending Moments on Subsea WellHeads on the Norwegian Continental Shelf

Author:

Grytøyr G..,Reinås L..,Eilertsen L. E.,Russo M..

Abstract

Abstract Wellhead Fatigue is a growing well integrity concern when installing subsea wells, especially with exposure to harsh environments, like e.g. North Sea or East Canada, and extreme environmental loads, using deep water drilling rigs in shallow water. Consequently, subsea instrumentation has been employed in several projects to document the actual load levels experienced by the subsea wellheads during drilling. There are no standard methods for such instrumentation and measurement processing, but in these cases the bending loads on subsea wellheads during offshore drilling have been measured according to ref. 11/ and methods presented at OTC 2015, ref. /5/, and OMAE 2015, ref. /3/. The actual load levels presented here have never before been published, and are of an unprecedented magnitude. Previously, state-of-the-art riser analyses have been found to be conservative when comparing to full-scale measurements offshore. Recent drilling campaigns in shallow water on the NCS have shown that in some cases the analyses are no longer conservative as they match the actual loads measured. Cycle-range histograms have been established from the measured WH bending moment time series. In some cases the dynamic bending moments are excessively large, even in moderate storm conditions. The loads can be a significant fraction of the static capacity of a typical subsea wellhead. Not sufficient to threaten the structural strength of the wellhead, but representing a significant challenge for the fatigue capacity. Three important findings have been made from resent measurements campaigns in shallow water in the North Sea. The dynamic bending moments acting on the subsea wellhead may be exceedingly large in shallow water.The magnitude of the dynamic bending moments is not primarily governed by the vessel and vessel motions, but also by the drilling package, i.e. BOP and riser. The dominant effect is the direct wave loading on the riser and BOP system itself.There seems to be a shift in the relation between predicted loads and actual loads at some given water depth. For deeper waters, riser analyses are usually found to provide conservative results. However, the riser analyses may not necessarily be conservative when moving into shallow water. This is believed to be related to the first riser mode coinciding with the region with most wave energy, i.e. 8–10 seconds.Consequently the margin of safety in safety-by-design excerisises may vary with waterdepth The relation between load levels and selection of drilling package is described in more detail. Modern sixth generation drilling rigs with large Blow Out Preventers (BOP), will get a double penalty. The large height of the BOP increases the bending moments at the wellhead. In addition, the riser tension is increased by the large submerged weight of LMRP. Finally, if the BOP stack itself is set in dynamic motion, it can potentially give a dynamic amplification of the loads. This paper provides important new information to assessments of subsea well integrity in shallow water.

Publisher

SPE

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3