A New Approach To Simulate the Boundary Layer in the Vapour Extraction Process

Author:

Nourozieh Hossein1,Kariznovi Mohammad1,Abedi Jalal1,Chen Zhangxing John1

Affiliation:

1. University of Calgary

Abstract

Summary The vapour extraction (VAPEX) process, as a nonthermal process, may be suitable for the recovery of heavy oil and bitumen. In this process, the injected solvent diffuses into the heavy oil/bitumen, reduces its viscosity, and drains it to the producing well. The VAPEX process is more acceptable than other processes because of its environmental friendliness, low capital and operating costs, and suitability for thin reservoirs. Most of the efforts in the modelling of the VAPEX process have concentrated on the application of fluid-flow equations to the solvent and the diluted oil inside each gridblock used in the simulation of the VAPEX. This is adequate when very fine gridblocks are chosen to simulate the process in which the boundary layer (transition zone) occurs over a number of gridblocks. Fine gridblocks, however, require a large amount of simulation time, which is not applicable for field-scale simulation even with today's computing power. To deal with this problem, a new approach is introduced that is based on the application of the fluid-flow equations to three phases: solvent, diluted oil, and heavy oil/bitumen. With this approach, it becomes possible to have mobile solvent, mobile live oil, and immobile or slow-moving heavy oil/bitumen inside a gridblock. The main feature of the proposed model is its ability to capture the boundary layer within a gridblock, making very fine gridblocks unnecessary in the simulation of the VAPEX process. In addition, this approach can be applied to model the viscous fingering inside gridblocks.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3