Gas Cycling and the Development of Miscibility in Condensate Reservoirs

Author:

Jessen K.1,Orr F.M.1

Affiliation:

1. Stanford University

Abstract

Summary This paper presents a detailed analysis of the development of miscibility during gas cycling in condensate displacements and the formation of condensate banks at the leading edge of the displacement front. Dispersion-free, analytical 1D calculations are presented for enhanced condensate recovery by gas injection. The analytical approach allows investigation of the possible formation of condensate banks (often at saturations that exceed the residual liquid saturation) and allows fast screening of optimal injection-gas compositions. We describe construction of the analytical solutions, a process that differs in some ways from related displacements for oil systems. All analytical solutions are verified by numerical calculations. We use an analysis of key equilibrium tie lines that are part of the displacement composition path to demonstrate that the mechanism controlling the development of miscibility in gas condensates may vary from first-contact miscible drives to pure vaporizing and combined vaporizing/condensing drives. Depending on the compositions of the condensate and the injected gas, multicontact miscibility can develop at or below the dewpoint pressure of the reservoir-fluid mixture. Finally, we discuss the possible impact on performance prediction of the formation of a mobile condensate bank at the displacement front in near-miscible gas-cycling/injection schemes. Introduction A significant portion of current hydrocarbon reserves exists in gas/condensate-carrying formations. In analog to oil reservoirs, production of condensate fields by pressure depletion only may result in significant loss of the heavy ends owing to liquid dropout below the dewpoint pressure. Gas-cycling/injection schemes are often applied to enhanced condensate recovery by vaporization. Successful design and implementation of enhanced condensate recovery schemes require accurate prediction of the compositional effects that control the local displacement efficiency. Many contributions to the development of the analytical theory of gas-injection processes can be found in the literature.1–13 The previously published research in this field has been focused on the understanding and construction of analytical solutions to problems of gas displacing oil as well as prediction of polymer/surfactant flood performance. In this work, we extend the analytical theory to include the important process of enhanced condensate recovery by gas injection. Numerical studies of miscibility variation in compositionally grading reservoirs by Hoier and Whitson14 demonstrated a significant potential for efficient gas cycling in condensate reservoirs below the dewpoint pressure owing to the development of miscibility by the combined condensing and vaporizing mechanism. In their study, rich separator gas was injected to obtain a miscible displacement at pressures far below the dewpoint pressure. With the emerging focus and efforts in the area of greenhouse gas capture and sequestration, CO2 may, in the near future, become widely available for enhanced-oil-recovery and enhanced-condensate-recovery projects. Seto et al.15 demonstrated, based on simulation studies, that CO2 can be used as an effective solvent in enhanced-condensate-recovery processes at pressures well below the dewpoint pressure of the initial condensate. In this paper, we focus on analyzing the development of miscibility during gas cycling in condensate reservoirs that, after primary production, leave significant amounts of retrograde condensate trapped in the formation. We start out by presenting the conservation equations that describe multicomponent two-phase flow in a porous medium, including volume change on mixing, and list the key assumptions made to apply the analytical solution strategy. We then describe, through analytical example calculations, the different mechanisms that control the development of miscibility in retrograde condensate reservoirs. p. 334–341

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3