Methodology to Assess Thaw Subsidence Impacts on the Design and Integrity of Oil and Gas Wells in Arctic Regions

Author:

Xie J..1,Matthews C. M.1

Affiliation:

1. C-FER Technologies Inc.

Abstract

Abstract Over the past decade, petroleum operators have shown increased interest in exploring and developing oil and gas reservoirs in both onshore and offshore Arctic areas. In many cases, the reservoirs are known to be overlain by massive permafrost layers on the order of 50 to 700 m thick. These conditions create unique design and operation challenges for production and injection wells from the perspective of ensuring that well integrity will not be compromised by the inevitable thaw subsidence of the permafrost soil layers. This paper presents a methodology for modeling and analyzing the severe casing loading and deformation conditions that can occur under thaw subsidence loading. The well design and evaluation methodology includes several sequential steps as follows: wellbore hydraulic and heat transfer analysis, to determine the heat input to the permafrost interval along the well(s) due to either the production of hydrocarbons or water injection; geothermal and geomechanical analyses, to calculate the extent of the permafrost thaw and the resultant thaw-induced soil stresses and movements; and casing-formation interaction analyses, to establish the structural response and evaluate the mechanical and hydraulic integrity of the well casing under the thaw subsidence loads. Sequential thermal and displacement analysis models are used to establish the extent of the thaw boundary that develops with time around the well(s) and the associated thaw subsidence response of the individual soil layers. These results serve as inputs to the non-linear analyses used to assess casing integrity. Examples are used to demonstrate the potential for thaw subsidence movements to cause casing failures, as a result of excessive compressive strains, buckling or large lateral deformations, in both single and multiple well layout scenarios. The methodology presented is recommended for optimizing well completion designs to minimize the potential for such failures to occur.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3