Unit Mobility Ratio Displacement Calculations for Pattern Floods in Homogeneous Medium

Author:

Morel-Seytoux Hubert J.1

Affiliation:

1. Chevron Research Co.

Abstract

Abstract The influence of pattern geometry on assisted oil recovery for a particular displacement mechanism is the object of investigation in this paper. The displacement is assumed to be of unit mobility ratio and piston-like. Fluids are assumed incompressible and gravity and capillary effects are neglected. With these assumptions it is possible to calculate by analytical methods the quantities of interest to the reservoir engineer for a great variety of patterns. Specifically, this paper presentsvery briefly, the methods and mathematical derivations required to obtain the results of engineering concern, andtypical results in the form of graphs or formulae that can be used readily without prior study of the methods. Results of this work provide checks for solutions obtained from programmed numerical techniques. They also reveal the effect of pattern geometry and, even though the assumptions of piston-like displacement and of unit mobility ratio are restrictive, they can nevertheless be used for rather crude but quick, cheap estimates. These estimates can be refined to account for non-unit mobility ratio and two-phase flow by correlating analytical results in the case M=1 and the numerical results for non-Piston, non-unit mobility ratio displacements. In an earlier paper1 it was also shown that from the knowledge of closed form solutions for unit mobility ratio, quantities called "scale factors" could be readily calculated, increasing considerably the flexibility of the numerical techniques. Many new closed form solutions are given in this paper. INTRODUCTION BACKGROUND Pattern geometry is a major factor in making water-flood recovery predictions. For this reason many numerical schemes have been devised to predict oil recovery in either regular patterns or arbitrary configurations. The numerical solutions, based on the method of finite difference approximation, are subject to errors often difficult to evaluate. An estimate of the error is possible by comparison with exact solutions. To provide a variety of checks on numerical solutions, a thorough study of the unit mobility ratio displacement process was undertaken. To calculate quantities of interest to the reservoir engineer (oil recovery, sweep efficiency, etc.), it is necessary to first know the pressure distribution in the pattern. Then analytical procedures are used to calculate, in order of increasing difficulty: injectivity, breakthrough areal sweep efficiency, normalized oil recovery and water-oil ratio as a function of normalized PV injected. BACKGROUND Pattern geometry is a major factor in making water-flood recovery predictions. For this reason many numerical schemes have been devised to predict oil recovery in either regular patterns or arbitrary configurations. The numerical solutions, based on the method of finite difference approximation, are subject to errors often difficult to evaluate. An estimate of the error is possible by comparison with exact solutions. To provide a variety of checks on numerical solutions, a thorough study of the unit mobility ratio displacement process was undertaken. To calculate quantities of interest to the reservoir engineer (oil recovery, sweep efficiency, etc.), it is necessary to first know the pressure distribution in the pattern. Then analytical procedures are used to calculate, in order of increasing difficulty: injectivity, breakthrough areal sweep efficiency, normalized oil recovery and water-oil ratio as a function of normalized PV injected.

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3