Affiliation:
1. Shell Global Solutions (US) Incorporated
2. Shell Global Solutions International B.V.
Abstract
Summary
Solving the Gauss-Newton trust-region subproblem (TRS) with traditional solvers involves solving a symmetric linear system with dimensions the same as the number of uncertain parameters, and it is extremely computational expensive for history-matching problems with a large number of uncertain parameters. A new trust-region (TR) solver is developed to save both memory usage and computational cost, and its performance is compared with the well-known direct TR solver using factorization and iterative TR solver using the conjugate-gradient approach.
With application of the matrix inverse lemma, the original TRS is transformed to a new problem that involves solving a linear system with the number of observed data. For history-matching problems in which the number of uncertain parameters is much larger than the number of observed data, both memory usage and central-processing-unit (CPU) time can be significantly reduced compared with solving the original problem directly. An auto-adaptive power-law transformation technique is developed to transform the original strong nonlinear function to a new function that behaves more like a linear function. Finally, the Newton-Raphson method with some modifications is applied to solve the TRS.
The proposed approach is applied to find best-match solutions in Bayesian-style assisted-history-matching (AHM) problems. It is first validated on a set of synthetic test problems with different numbers of uncertain parameters and different numbers of observed data. In terms of efficiency, the new approach is shown to significantly reduce both the computational cost and memory usage compared with the direct TR solver of the GALAHAD optimization library (see http://www.galahad.rl.ac.uk/doc.html). In terms of robustness, the new approach is able to reduce the risk of failure to find the correct solution significantly, compared with the iterative TR solver of the GALAHAD optimization library. Our numerical results indicate that the new solver can solve large-scale TRSs with reasonably small amounts of CPU time (in seconds) and memory (in MB). Compared with the CPU time and memory used for completing one reservoir simulation run for the same problem (in hours and in GB), the cost for finding the best-match parameter values using our new TR solver is negligible. The proposed approach has been implemented in our in-house reservoir simulation and history-matching system, and has been validated on a real-reservoir-simulation model. This illustrates the main result of this paper: the development of a robust Gauss-Newton TR approach, which is applicable for large-scale history-matching problems with negligible extra cost in CPU and memory.
Publisher
Society of Petroleum Engineers (SPE)
Subject
Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献