Application of Hybrid ARIMA – Decision Tree Algorithm in Reservoir Pressure Surveillance

Author:

Mohammad Fuad Iqmal Irsyad1,Rosli Luqman Hakim2,Husni Husiyandi2

Affiliation:

1. Universiti Teknologi PETRONAS

2. Consurv Technic

Abstract

Abstract Bottom hole pressures are valuable source of information for reservoir surveillance and management and are the heart of reservoir engineering. Real – time pressure measurements record pressure data at 5 second interval resulting in enormous accumulation of data. The size and volume of the accumulated data limit the capability of existing analysis software to load and interpret data. This paper presents an improved methodology for data quality checking and data optimization in determining reservoir pressure depletion via Autoregressive Integrated Moving Average (ARIMA) and Decision Tree Model. Dataset was gathered from a representative reservoir from Malay Basin. The ARIMA algorithm presented was designed for quick and efficient data quality checking. The Decision Tree Model in other hand was utilized to select maximum buildup pressure for reservoir depletion point via well status parameters. The maximum pressures were selected from buildup up data when the decision tree conditions were met. Versus classical methods, the algorithm has obtained around 90% similarity. The resulting data were then can fully optimized for reserve reporting and forecasting study i.e. analysis and numerical simulation. The paper also reports on the advantages in the application of ARIMA – Decision Tree Algorithm in pressure surveillance revealing few key advantages namely minimize the need of well intervention and optimized workflow for reservoir engineer to view, utilize, and detect reservoir depletion data. ARIMA – Decision Tree Algorithm is targeted to be installed and integrated in field historian for better overall data analysis and visualization. Results produced from the ARIMA – Decision Tree Algorithm which consist of reservoir pressure depletion data will then improve more advance analysis such as simulation and forecasting in terms of overall speed and accuracy. As a conclusion, this paper presents the importance and application of incorporating Big Data Analytics Algorithm in reservoir management and reporting. Future work, deliverability calculations can be incorporated in the model to identify and rectify any abnormal reservoir behavior.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automatic Trend Tracking Model for Coalbed Methane Production Forecast;Journal of Physics: Conference Series;2021-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3