Factors Affecting Fuel Availability and Composition During In Situ Combustion

Author:

Alexander John D.1,Martin W.L.1,Dew John N.1

Affiliation:

1. Continental Oil Co.

Abstract

Abstract This paper presents data obtained using a flood-pot technique to determine the fuel available and the corresponding theoretical air requirements for in situ combustion of crude oils. Since the technique is relatively quick and easy, it is a practical and convenient tool for evaluating reservoirs as fireflood prospects. It is also a research tool which facilitates systematic study of the variables affecting fuel availability and corresponding air requirements. The understanding of these variables is of prime importance to those concerned with the technical and economic development of in situ combustion as an oil-recovery process. The experimental results show conclusively that the fuel available for in situ combustion is not a constant but, rather, varies with crude-oil characteristics, porous-medium type, oil saturation, air flux and time-temperature relationships. Thus, the fuel availability for specified field applications should be determined using actual reservoir crude and core material and the process conditions expected during in situ combustion in the reservoir. Introduction In situ combustion is a thermal process for recovering crude oil from reservoirs. The thermal energy released during the combustion of a small amount of the oil in place aids in the displacement of the remaining oil. Numerous articles have been published describing the in situ combustion process giving detailed results of laboratory and field experiments. In order to engineer an in situ combustion project, a number of important factors must be considered and determined. These factors include:the amount of fuel consumed per unit of reservoir volume swept by the combustion zone,the composition of the fuel consumed,the amount of air required to consume this fuel,the portion of the reservoir swept by the combustion zone,the appropriate air-injection rates and pressures,the amount of oil that will be recovered,the rate of oil production andthe operating costs. Nelson and McNiel recently have described a procedure which utilizes laboratory combustion-tube data as a basis for the calculation of some of these design factors. Various authors have attempted to describe the in situ combustion process mathematically, and considerable progress has been made. Analytical solutions to the problem of heat transfer from a moving combustion front have been obtained for linear and radial systems. All of the published results involve the assumptions that:fuel concentration is constant throughout the reservoir, or that fuel concentration is inversely proportional to the velocity of the front for a given rate of oxygen consumption; andthe fuel reacts instantaneously with injected oxygen, while liberating a constant amount of heat per unit weight of fuel at all temperatures. It seems both desirable and reasonable to test the validity of these assumptions experimentally. This paper presents laboratory data which were obtained by means of a "fire flood-pot" method for determining fuel availability and composition, and the corresponding theoretical air requirements for in situ combustion of crude oils under variable conditions. The mechanics of the method are similar to a conventional tube-run experiment. The important differences involve the size of the reservoir model used and the method for providing the experimental environment. The new method subjects conventionally-sized core samples or unconsolidated sands to a programmed environmental sequence similar to that experienced by a similar volume of rock during the approach and passage of a combustion front in a long tube or in an oil reservoir undergoing in situ combustion. Restored-state samples can also be used. The small samples and relatively simple techniques involved allow an experiment to be set up, run and calculated in about three 8-hour days. This is a considerable improvement over long-combustion-tube techniques which can require several days to run and several more work days to set up and calculate. All the runs presented were run at 40-psig injection pressure. Pressure was not considered as a variable for these experiments, since we previously had found that it had only a small effect on fuel availability up to 600 psig. JPT P. 1154^

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3