Experimental Investigation of Nanoparticles/Polymer Enhanced CO2- Foam in the Presence of Hydrocarbon at High-Temperature Conditions

Author:

Bashir Ahmed1,Sharifi Haddad Amin1,Rafati Roozbeh1

Affiliation:

1. University of Aberdeen

Abstract

Abstract This study, aims to investigate the effect of nanoparticles/polymer on CO2-foam stability and foamability of Alpha Olefin Sulfonate, AOS at high temperature and salinity conditions. Moreover, the effect of extra hydrocarbon phase on foam stability at high temperature and salinity conditions is studied. Static CO2-foam experiments were conducted according to ASTM: D3601 standard method for bulk foam stability in aqueous media, to analyse the foam half-life and its real time stability with nanoparticles and polymer at high temperature and salinity conditions in the presence of hydrocarbons. The average bubbles size distribution and foam texture were analysed using an Olympus stereo microscope SZX100 equipped with 5 mp camera. The results show that the CO2-foam stability enhanced with increasing nanoparticles/polymer concentrations up to threshold values. The optimum concentrations to achieve the maximum stability were 0.2 wt% and 0.3 wt% for silica and xanthan gum, respectively. In order to understand the performance of the optimum foam composition in presence of extra hydrocarbon phase at reservoir condition, foam then brought into contact with a North Sea oil sample. The results shown that the foam stability was not changed when oil saturation increase up to 3.0 vol%, but was completely deteriorated when the concentration reaches 40.0 vol%. This study suggests that optimum concentrations of nanoparticles and polymer at a high temperature and salinity conditions should be determined before the design of any foam-based enhanced oil recovery process.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3