Abstract
Abstract
In the first part of this study, the accuracy of the JBN technique for the determination of heavy oil/water relative permeabilities, and the effect of temperature on relative permeabilities is examined by giving numerical as well as experimental examples. Using the JBN technique leads to a false temperature dependence of relative permeability curves. In the second part, we present unsteady state relative permeability experiments with initial brine saturation at differing temperatures conducted using South Belridge sand and heavy oil. A new three step experimental technique and an analysis procedure were developed to test the effect of temperature on relative permeabilities. In this technique, an ambient temperature unsteady-state relative permeability run is conducted in the first stage, and following that the temperature is increased twice (i.e. 1220F and 1500F). Two phase saturation profiles along the sand pack are measured using a CT scanner. A commercial black oil simulator, coupled with a global optimization code is then used to estimate two phase relative permeabilities. Experimental saturation profiles, differential pressure and recovery data collected from both the ambient and higher temperature data are used in the numerical model. It has been observed that a single set of relative permeability curves can represent both the ambient and high temperature parts of the experiment. This suggests that relative permeability is not a function of temperature at least for the systems and temperature ranges tested P. 329
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献