Investigation of the Internal Blowout Accident Involving Overpressured Reservoirs: Case of CI-11 Well, Southern Tunisia

Author:

Khalfi Chaouki1,Ahmadi Riadh2

Affiliation:

1. National Engineering School of Sfax (ENIS): Laboratory of Water, Energy and Environment (LR3E) (Corresponding author; email: chawki.khalfi@gmail.com)

2. National Engineering School of Sfax (ENIS): Laboratory of Water, Energy and Environment (LR3E)

Abstract

Summary This study consists of an assessment of the ecological accident implicating the Continental Intercalaire-11 (CI-11) water well located in Jemna oasis, southern Tunisia. The CI-11 ecological accident manifested in 2014 with a local increase of the complex terminal (CT) shallow water table salinity and temperature. Then, this phenomenon started to spread over the region of Jemna, progressively implicating farther wells. The first investigation task consisted of logging the CI-11 well. The results revealed an impairment of the casing and cement of a huge part of the 9⅝ in. production casing. Historical production records show that the problems seem to have started in 1996 when a sudden production loss rate occurred. These deficiencies led to the CI mass-water flowing behind the casing from the CI to the CT aquifers. This ecological accident is technically called internal blowout, where water flows from the overpressurized CI groundwater to the shallower CT groundwater. Indeed, the upward CI hot-water flow dissolved salts from the encountered evaporite-rich formations of the Lower Senonian series, which complicated the ecological consequences of the accident. From the first signs of serious water degradation in 2014 through the end of 2018, several attempts have been made to regain control of annular upward water flow. However, the final CT groundwater parameters indicate that the problem is not properly fixed and communication between the two involved aquifers still persists. This accident is similar to the OKN-32 case that occurred in the Berkaoui oil field, southern Algeria, in 1986, and included the same CI and CT aquifers. Furthermore, many witnesses claim that other accidental communications are probably occurring in numerous deep-drilled wells in this region. Concludingly, Jemna CI-11, Berkaoui OKN-32, and probably many other similar accident cases could be developing regional ecological disasters by massive water resource losses. The actual situation is far from being under control and the water contamination risk remains very high. In both accidents, the cement bond failure and the choice of the casing point are the main causes of the internal blowout. Therefore, we recommend (1) a regional investigation and risk assessment plan that might offer better tools to predict and detect earlier wellbore isolation issues and (2) special attention to the cement bond settlement, evaluation, and preventative logging for existing wells to ensure effective sealing between the two vulnerable water table resources. Besides, in the CI-11 well accident, the recovery program was not efficient and there was no clear action plan. This increased the risk of action failure or time waste to regain control of the well. Consequently, we suggest preparing a clear and efficient action plan for such accidents to reduce the ecological consequences. This requires further technical detailed study of drilling operations and establishment of a suitable equipment/action plan to handle blowout and annular production accidents.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3