LoSal Enhanced Oil Recovery: Evidence of Enhanced Oil Recovery at the Reservoir Scale

Author:

Lager Arnaud1,Webb Kevin John2,Collins Ian Ralph2,Richmond Diane Marie2

Affiliation:

1. BP Exploration Inc.

2. BP Exploration

Abstract

Abstract For over 10 years research has been carried out on the impact of low salinity waterflooding on oil recovery. Data derived from corefloods, single well tests, and log-inject-log tests have shown that injecting low salinity water into an oil reservoir should result in a substantial increase in oil recovery in many cases. The results varied from 2 to 40% increases in waterflood efficiency depending upon the reservoir and composition of the brine. In 2005, a hydraulic unit was converted to inject low salinity brine into an Alaskan reservoir, by switching a single injection pad to low salinity water from high salinity produced water. An injector well and 2 close production wells were selected within a reasonably well constrained area. A surveillance programme was devised which included capturing produced water samples at regular intervals for ion analysis and the capturing of production data. Detailed analysis of the production data, and the chemical composition of the produced water, demonstrated an increase in oil production and provided direct field evidence of the effectiveness of LoSal™ at inter-well scales. Additionally, the response of the reservoir to low salinity water injection was confirmed by single well chemical tracer test. In parallel, laboratory studies have led to mechanistic understanding of LoSal™ in terms of multiple-component ionic exchange (MIE) between adsorbed crude oil components, cations in the insitu brine and clay mineral surfaces. The results clearly show that the enhanced oil production and associated water chemistry response was consistent with the MIE mechanism proposed. The oil production data have been modeled using an in-house developed modification to Landmark's VIPTM reservoir simulation package. An excellent match for the timing of the oil response was obtained which provides a good basis for predicting the result for large scale application of LoSal™ flooding. Introduction It has been more than 10 years since Yildiz and Morrow (1996) pushed forward the research started by Jadhunandan(1990; 1991; 1995) and published their paper on the influence of brine composition on oil recovery. This paper showed that changes in injection brine composition can improve recovery. Since then, Tang & Morrow (1999) have progressed the research on the impact of brine salinity on oil recovery, followed by other researchers such as Webb et al. (2004) and McGuire et al. (2005); these authors performed an extensive research programme on low salinity injection (LoSal™). This programme included numerous core flood experiments performed at ambient and reservoir conditions (at high temperature and pressure, with 'live' fluids) both in secondary and tertiary mode, single well tracer tests (SWCTT) and log inject log tests, showed a significant increase in oil recovery due to low salinity brine injection.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3