Affiliation:
1. Heriot-Watt University
Abstract
Abstract
The average recovery factor of current producing oil reservoirs is about 35-50% worldwide. Enhanced Oil Recovery (EOR) methods such as Water Alternating Gas (WAG) target the oil left in place and improve the final recovery of the developed fields. In a WAG injection plan, some reservoir blocks experience simultaneous gas and water flow. Therefore, Simultaneous Water And Gas (SWAG) injection experiments are performed to understand and simulate the fluid flow behaviour in these blocks more accurately.
The experimental data we analyzed in this manuscript were obtained by performing a SWAG experiment using real reservoir rock and fluid (mixed-wet carbonate rock extracted from the Abu-Dhabi field). In miscible and immiscible experiments, the injected gas was Methane and CO2, respectively. We tried to simulate the experiments using Stone's, Baker's, and Stone's exponent models to evaluate the performance of these models in simulating SWAG experiments. It was shown that SWAG displacement can be simulated using Stone's first model and changing two-phase kr data as a matching parameter. The results showed that we do not need to correct the three-phase relative permeability in the low oil saturation region for simulating SWAG experiments.
The study presented in this paper is novel in two aspects: first, the SWAG experiments were conducted in reservoir carbonate samples using real reservoir fluids; and second, even though many researchers have simulated the WAG experiments, not many have discussed the simulation of SWAG experiments. The results presented in this paper is of utmost importance for decision making, designing, and simulating CO2-EOR plans in giant Abu-Dhabi carbonate reservoirs.