Gas/Liquid Two-Phase Flow in Pipes: Slugs, Classical Flow-Map, and 1D Compositional Simulation

Author:

Raimondi Luigi1

Affiliation:

1. Process Simulation Services

Abstract

Summary In this paper, I present numerical results of gas/liquid flows in pipelines obtained from a new simulation code. One difference, with respect to other 1D fluid dynamic commercial simulation products, is the use of a compositional approach to the problem: This is rarely found in published articles about gas/liquid flow in the oil and gas industry. It is shown that the algorithm can calculate both pressure and material fast waves generated during the transportation of gas and liquid in pipes. The solution algorithm is based on the application of a two-fluid model to the mass, momentum, and energy conservation equations, which are solved using a mixed implicit-explicit integration schema. Closure equations for the calculation of interface stress are taken from literature articles. A dam-break simulation (i.e., a Riemann initial value problem) is presented as a severe test case for validation of the two-phase flow algorithm. Because the code is able to capture sharp and fast changes in the liquid holdup connected to the formation of pressure waves, it is applied to the simulation of slug flow without the use of steady-state “unit cell” models and slug tracking functions. In this context, the experimental results on pseudoslug formation in inclined pipes at high pressures, published by the Tulsa University Fluid Flow Project (TUFFP), are used to compare simulated results with experimental data. The last part is dedicated to the simulation of some cases taken from a classical flow-map of a fundamental article by Taitel and Dukler (1976). At constant liquid superficial velocity, the formation of liquid slugs and their subsequent termination with the increase of gas flow rate is simulated with details never previously presented.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3