Sand Prediction: A Practical Finite-Element 3D Approach for Real Field Applications

Author:

Volonté G..1,Scarfato F..1,Brignoli M..1

Affiliation:

1. Eni Exploration & Production

Abstract

Summary Sand production is a critical issue in the oil and gas industry. During the production of a well, sand production may have negative consequences, such as risk of well failure, erosion of pipelines and surface facilities, and the need for sand separation and disposal. Knowing the conditions for the onset of sand production allows optimizing sand free production and, eventually, avoiding or delaying the use of sand-control methods. The aim of this work is to establish a reliable workflow for the estimation of the conditions for sand production in real field cases by means of finite-element modeling. The fundamental requirement is to set up a 3D coupled model that can be easily adjusted to the most complex conditions (e.g., stress anisotropy, deviated wells, and complex perforation patterns). The most suitable geometries and associated meshing strategies to describe the wellbore, the perforation tunnels, and the surrounding formation are analyzed. Further improvements with respect to previous approaches include the fact that the drilling and completion phases were also simulated to compute the correct stress distribution before the production, and that fluid flow and rock deformation are simulated in a fully coupled way to investigate accurately the effect of drawdown. Shear failure of reservoir rock, considered as an elastoplastic medium, is the main sand-production mechanisms analyzed, and the damage of the rock around the perforations is evaluated by analyzing the distribution of the equivalent plastic strain. Two real field cases are simulated, and the results of the finite-element models are consistent with the ones obtained by means of an analytical models and with field observations. Moreover, this numerical approach allows quantifying the spatial distribution and the severity of the damage of the rock around the perforations, facts that are either oversimplified or not considered at all in analytical models. For future applications, this model can be straightforwardly extended to more complex conditions and can also be improved to provide volumetric sand prediction.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3