Leveraging Cloud-Based Analytics to Enhance Near-Real Time Stage Management

Author:

Bommer Peter1,Iriarte Jessica2

Affiliation:

1. Abraxas Petroleum Corporation

2. Well Data Labs

Abstract

Abstract Normally, the optimization of hydraulic fracturing performance is limited to pre-job modeling and analytics. A design is determined for a particular well or project and applied without significant change during the course of the stimulation. Performance results are collected during the job and then analyzed after the fact, with the primary purpose of designing for the next project. Significant design improvements can be made by evaluating stage performance in real-time as the well is being stimulated. Unfortunately, real-time analytics are difficult because the immense of volume, variety, and velocity of the available data. The typical frac fleet captures metered data from as many as one hundred measurement points simultaneously on a second-by-second basis. This means that for a single stage, the comma-separated values (CSV) files containing the recorded channels often include over one million discrete data points. Utilizing these large files (approximately 5 MB) with typical off-the-shelf software can be time-consuming. The manual process of file acquisition by analytical staff alone can often exceed the time available between stages. While these files are an invaluable resource, they are often left untouched until long after a job is completed, if they are ever used at all. Cloud-based analytics greatly shorten the acquisition and utilization timeline, making near real-time analysis possible. While the challenges involved in utilizing "big data"; for actionable analytics are frequently discussed, the technology and approaches described in this paper are relatively new to the field of real-time stage management. This paper introduces a novel and highly effective approach in the field of hydraulic fracturing optimization. The history of CSV analysis is presented along with examples of specific types of beneficial stage analytics.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3