Prediction of Bubble Point Pressure Using Artificial Intelligence AI Techniques

Author:

Alakbari Fahd S.1,Elkatatny Salaheldin2,Baarimah Salem O.1

Affiliation:

1. King Fahd University of Petroleum & Minerals

2. King Fahd Unversity, Department of Petroleum Engineering

Abstract

Abstract It is very important to determine or predict the bubble point pressure (BPP) with high accuracy in petroleum industry. Laboratory measurement of the BPP requires collecting actual samples from the bottom of the wellbore and simulates the reservoir conditions at the lab. This operation takes long time and high cost. To overcome this issue, many empirical correlations were developed to predict the BPP with wide range of average percent error. In this research, we will use artificial intelligent (AI) techniques to predict the bubble point pressure using published data (760 data sets). Two different AI techniques will be used, artificial neural network (ANN) (back propagation network (BPN) and radial basis functions networks (RBF)), and fuzzy logic tool (FL) to develop the model. The obtained results will be compared with the available correlations in the literature. The results obtained showed that all AI models were able to predict the bubble point pressure with a high accuracy. The new fuzzy logic (FL) model outperforms all the artificial neural network models and the most common published empirical correlations. BPN, RBF and FL models provide predictions of bubble point pressure with correlation coefficient of 0.9926, 0.9969, and 0.9995, respectively.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3