Advanced Data Analysis from Laboratory Testing for Soft-Sand Completions

Author:

Gurley Kelly1,Fischer Christine1

Affiliation:

1. Constien & Associates, Inc.

Abstract

Abstract Laboratory sand retention and dynamic fluid loss/retained permeability reservoir drill-in fluid (RDIF) testing protocols are almost always run in a linear flow configuration. While these tests may provide excellent correlations and predictive curves, the most useful form of the final data would be translated into radial flow predictions for different drawdown conditions into a wellbore. An effort has been made using data from existing sand retention and dynamic fluid loss/retained permeability RDIF testing protocols to demonstrate more complete analysis of the standard data provided from the tests, including radial flow calculations. This paper provides an explanation of the test methods and data they generate, along with the laws and equations used to simplify the problem of linear-to-radial flow data. Constant drawdown sand retention testing provides gravel pack, screen, and clean formation permeability data, while Dynamic Fluid Loss/Retained Permeability RDIF testing on the unconsolidated formation material provides the final damaged screen permeability, remaining filtercake permeability, invaded formation permeability and the undamaged formation permeability. Using the combination of data from the two tests, translation from linear to radial flow calculations can be estimated for a wellbore scenario using the specific permeability measurements for each wellbore section, gathered from the original testing. Using representative wellbore data, a correlation is made between laboratory permeability measurements and flow rates and expected wellbore pressures. Step by step calculations using the Radial Flow equation, assuming steady state and single phase flow, allows a simpler conversion to more typical data seen in wellbore scenarios. Calculations have been made to simplify data from constant drawdown tests and dynamic fluid loss/retained permeability RDIF testing from linear flow in laboratory conditions to estimate radial flow for wellbore conditions. The results of this study can provide a more streamlined process to translate laboratory data from multiple tests into applicable radial flow which can be used for wellbore calculations.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3