An Efficient Method to Control Oilfield Wells Through Advanced Field Management Ensemble Based Optimization Capabilities

Author:

Abbas Hicham1,Mustapha Hussein1

Affiliation:

1. Schlumberger

Abstract

Abstract Field development optimization is a crucial and important problem considering economic and physical constraints. Advanced technologies such as smart wells and completions, and well performance optimization, allow for maximizing recovery without the need of additional drilling activities and all associated costs. This type of strategy applies to mature and challenging heterogeneous reservoirs with water and gas coning, and to low permeability and gas condensate deposits, and others. The presented method elegantly considers all field constraints and delivers predictive optimal well control settings taking into consideration reservoir uncertainties and offers optimized development strategies while minimizing on risk and cost. We will present a new field development technology to optimize well performance in both oil and gas fields. The methodology allows for simultaneous optimization under uncertainty of multiple wells using surface constraints and subsurface flow control devices. The method is very fast and uses a combination of gradient and stochastic methods. Starting from an ensemble of realizations of the reservoir model, the best well control settings are searched using a steepest ascent gradient search method, where the search direction can be approximated using the cross covariance of the ensemble of objectives predicted using cloned reservoir simulations for a user defined future time horizon. The workflow solution employs several levels of computational complexity reduction combining advanced hardware architecture and localization algorithms to speedup optimization procedures and cover wider range of spatial uncertainty. We present two examples that include control of surface liquid rates of producers and injection rates of injectors as well as controlling the flow control valves of producer and injector wells to demonstrate both efficiency and robustness of the optimization method. The method presented is very robust and offers with the highest confidence optimal field developments making best use of the most advanced software and hardware technology. The novel presented process results in significant cost reduction on drilling and other operational activities.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3