Potential Evaluation on the Artificial Geothermal Energy of Post Steamed Heavy Oil Reservoirs

Author:

Dong Xiaohu1,Zhang Hao1,Lu Ning1,Xiao Zhan1,Lyu Xiaocong1,Liu Huiqing1,Chen Zhangxin2

Affiliation:

1. China University of Petroleum-Beijing

2. University of Calgary

Abstract

Abstract Steam injection process is usually the primary extraction method for heavy oil reservoirs. But, in recent decades, with the steam injection operation continues, most of the steamed heavy oil reservoirs have achieved a depleted status (residual oil zone). Meanwhile, for most post steamed heavy oil reservoirs, the average formation temperature can reach above 150℃. It indicates that they can be considered as a potential artificial geothermal energy source. In this work, those post steamed heavy oil reservoirs are proposed as a source of artificial geothermal energy, and the extraction potential is evaluated. A heavy oil reservoir simulation model is firstly constructed based on a geological model which involves a five-spot well pattern of steam flooding operation in Shengli oilfield, Sinopec. This model can be used to represent a depleted status of a steamed heavy oil reservoir. Subsequently, based on this five-spot well pattern of steam flooding, a geothermal heat extraction model is developed. In order to accurately evaluate the extraction potential of this artificial geothermal energy, the wellbore heat loss is also considered by using a discretized wellbore model. Thus, two different extraction methods of water injection and CO2 injection are simulated. Then, based on the simulation model, the factors that control the heat extraction rate in high temperature depleted heavy oil reservoirs are also discussed. Results show that a post steamed heavy oil reservoir can be a potential source of geothermal energy. By using the existing steam flooding well pattern, the initial investment is reduced, thus, a high-efficient development can be achieved. From the simulation results, it is found that the method of geothermal energy extraction in high temperature depleted heavy oil reservoir (165 ℃, 2 MPa) using CO2 can achieve a high-speed geothermal energy extraction process in the early stage (<1.5 years). In comparison, a method of water injection process performs better within a longer time period (>1.5 years). Simultaneously, it is found that the bottom-hole pressure, heat extraction time and CO2 injection rate can have the biggest impact on the heat extraction rate. Because of the high temperature condition, the post steamed heavy oil reservoirs can have a huge potential of heat mining. The technology of geothermal energy extraction can further enhance their development value and prolong the working life.

Publisher

SPE

Reference22 articles.

1. Hydraulic And Thermal Interaction Between Rock And Fluid In an Artificial Geothermal Reservoir;Bobak,1999

2. Geothermal energy production utilizing abandoned oil and gas wells.;Bu;Renewable Energy,2012

3. Thermal Recovery of Oil and Bitumen;Butler;GravDrain's Blackbook,1997

4. Enhanced Oil Recovery Techniques for Heavy Oil and Oilsands Reservoirs after Steam Injection;Dong;Applied Energy,2019

5. Hybrid Enhanced Oil Recovery Processes for Heavy Oil Reservoirs;Dong,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3