A Critical Review of Water Chemistry Alteration Technologies to Develop Novel Water Treatment Schemes for SmartWater Flooding in Carbonate Reservoirs

Author:

Ayirala S. C.1,Yousef A. A.1

Affiliation:

1. Saudi Aramco

Abstract

Abstract The importance of tuning injection water chemistry for upstream is getting beyond formation damage control/water incompatibility to increase oil recovery from waterflooding and different improved oil recovery (IOR)/enhanced oil recovery (EOR) processes. The water chemistry requirements for IOR/EOR have been relatively addressed in the recent literature, but the key challenge for field implementation is to find an easy, practical, and optimum technology to tune water chemistry. The currently available technologies for tuning water chemistry are limited, and most of the existing ones are adopted from the desalination industry, which relies on membrane based separation. Even though these technologies yield a doable solution, they are not the optimum choice to alter injection water chemistry in terms of incorporating selective ions and providing effective water management for large scale applications. In this study, several of the current, emerging, and future desalination technologies are reviewed with an objective to develop potential water treatment solutions that can most efficiently alter injection water chemistry for SmartWater flooding in carbonate reservoirs. Standard chemical precipitation technologies, such as lime/soda ash, alkali, and lime/aluminum based reagent, are only applicable for removing certain ions from seawater. The lime/aluminum based reagent process looks interesting, as it can remove both sulfates and hardness ions to provide some tuning flexibility for key ions included in the SmartWater. There are some new technologies under development that use chemical solvents to extract salt ions from seawater, but their capabilities to selectively remove specific ions need further investigation. Forward osmosis and membrane distillation are the two emerging technologies, and these can provide good alternatives to reverse osmosis seawater desalination for the near-term. These technologies can offer a better cost-effective solution where there is availability of low grade waste heat or steam. The two new desalination technologies, based on dynamic vapor recovery and carrier gas extraction, are well suited to treat high salinity produced water for zero liquid discharge (ZLD). These technologies may not be able to provide an economical solution for seawater desalination. Carbon nanotube desalination, graphene sheet-based desalination, and capacitive deionization are the three potential future seawater desalination technologies identified for the long term. Among these, carbon nanotube based desalination is much attractive, although the technology is still largely under research and development. This review study results show that there is no commercial technology yet available to selectively remove specific ions from seawater in one step and optimally meet desired water chemistry requirements of SmartWater flooding. As a result, different novel schemes involving selected combinations of chemical precipitation, conventional/emerging desalination, and produced water treatment technologies are proposed. These schemes represent both approximate and improved solutions to selectively incorporate specific key ions in the SmartWater, besides presenting the key opportunities to treat produced water/membrane rejects and provide ZLD capabilities in SmartWater flooding applications. The developed novel schemes can provide an attractive solution to capitalize on existing huge produced water resources in Saudi reservoirs to generate SmartWater and minimize wastewater disposal during field-wide implementation.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3