Altering Wettability in Bakken Shale by Surfactant Additives and Potential of Improving Oil Recovery During Injection of Completion Fluids

Author:

Alvarez J. O.1,Schechter D. S.1

Affiliation:

1. Texas A&M University

Abstract

Abstract Fracture treatment performance in Bakken shale reservoirs can be improved by altering rock wettability, as measured with contact angle (CA), from oil-wet to water-wet. The use of chemical additives for altering wettability also results in alteration of the interfacial tension (IFT). The Young-Laplace equation relates the capillary pressure to IFT and contact angle. Thus, it follows that capillarity is significant in nano-pores associated with unconventional liquid reservoirs (ULR) and complex as the CA and IFT varies simultaneously. We carefully evaluate these interactive variables to improve oil recovery by alteration of capillary pressure by understanding the wetting state of siliceous and carbonate Bakken cores with and without chemical additives. We have observed that wettability can be altered from the ULR natural state of oil-wet to systems favoring frac fluid imbibition. Surfactants can be added to completion fluids, in proper concentrations, to alter wettability while hydraulic fracturing the formation. This experimental study evaluates and compares the efficiency of anionic, nonionic and blended surfactants as well as complex nanofluids (CNF) on recovering liquid hydrocarbons from Bakken shale cores by analyzing the effect of wettability and IFT alteration and their impact on spontaneous imbibition. The original wettability of Bakken cores is determined by CA measurements. Then, three surfactant types, anionic nonionic and nonionic-cationic, and CNF are evaluated to gauge their effectiveness in altering wettability. The results show that all surfactants and CNF are able to shift core wettability from oil-wet to water-wet. However, chemical additives efficacy strongly depends on rock lithology, surfactant, and CNF type. Moreover, to evaluate further wettability alteration, stability of surfactant and CNF solution films on the shale rock surface is determined by zeta potential measurements. Surfactants and CNF show higher zeta potential magnitudes than water without additives, as an indication of better stability and water-wetness, which agrees with CA results. In addition, the effect of IFT alteration is studied in solutions with surfactants and CNF, and Bakken crude oil. Higher IFT reduction is achieved by anionic surfactants, but all surfactants and CNF perform better than water alone. Surfactants and CNF potential for improving oil recovery in ultralow permeability Bakken cores is investigated by spontaneous imbibition experiments using modified Amott cells in an environmental chamber. Using computed tomography (CT) scan methods, water imbibition as penetration magnitude is measured in real time. In addition, oil recovery is recorded with time to compare the performance of surfactants, CNF, and completion fluid alone. The results suggest that surfactants and CNF are better on recovering oil from shale core displacing more oil and having higher penetration magnitudes than water without additives. In addition, oil recovery depends on surfactant and CNF type and rock mineral composition. These findings are consistent with CA, zeta potential, and IFT measurements. From the results obtained, it can be concluded that altering wettability and reducing IFT when surfactants and CNF additives are added to completion fluids can improve oil recovery in Bakken cores.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3