Applications of Geomechanics to Hydraulic Fracturing: Case Studies From Coal Stimulations

Author:

Pandey Vibhas J.1,Flottman Thomas2,Zwarich Nola R.1

Affiliation:

1. ConocoPhillips

2. Origin Energy

Abstract

Summary Modern hydraulic-fracture treatments are designed by use of fracture simulators that require formation-related inputs, such as in-situ stresses and rock mechanical properties, to optimize stimulation designs for targeted reservoir zones. Log-derived stress and mechanical properties that are properly calibrated with injection data provide critical descriptions of variations in different lithologies at varying depths. From a practical standpoint, however, most of the hydraulic-fracturing simulators that are currently used for treatment design use only a limited portion of a geologic-based rock-mechanical-property characterization, thus resulting in outputs that may not completely align with observed outcomes from a fracturing treatment. By use of examples from hydraulic-fracture stimulations of coals in a complex but well-characterized stress environment in Surat Basin of eastern Australia, we obtain the reservoir-rock-related input parameters that are important for the design of hydraulic fractures and also identify those that are not essential. To understand the effect on improving future fracture-stimulation designs, the authors present work flows for pressure-history matching of treatments and subsequent comparison of corresponding geometries with external measurements, such as microseismic (MS) surveys, to calibrate geomechanical models. The paper presents examples discussing synergies, discrepancies, and gaps that currently exist between “geologic” geomechanical concepts in contrast to the geomechanical descriptions and concepts that are used and implemented in hydraulic-fracturing stimulations. Ultimately it remains paramount to constrain as many critical variables as realistically and as uniquely as possible. Significant emphasis is placed on reservoir-specific pretreatment data acquisition and post-treatment analysis. Some of the obvious differences observed between the measured and fracture-model-derived geometries are also presented in the paper, highlighting the areas in fracture modeling where significant improvement is needed. The approach presented in this paper can be used to refine hydraulic-fracture-treatment designs in similar complex reservoirs worldwide.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3