Transport of Nanogel through Porous Media and Its Resistance to Water Flow

Author:

Almohsin Ayman1,Bai Baojun1,Imqam Abdulmohsin1,Wei Mingzhen1,Kang Wangli2,Delshad Mojdeh3,Sepehrnoori Kamy3

Affiliation:

1. Missouri University of Science and Technology

2. China University of Petroleum

3. The University of Texas at Austin

Abstract

Abstract The application of nanoparticles in enhanced oil recovery (EOR) continues to gain attention in the oil industry due to its apparent potential. However, previous studies have focused on the evaluation of stiff particles, such as silica and aluminum oxide. In this paper, we present our experimental results of deformable nanoparticle transport behavior through porous media. Nanogel particles with sizes ranging from 100–285 nm were used to represent deformable nanoparticles. Core flooding tests were run using sandstone cores with water permeabilities ranging from 42 to 1,038 mD. We investigated the effects of the permeability, particle concentration, particle deformability, and flow rate on the particle propagation, resistance factor, and residual resistance factor (permeability reduction factor). The results show that the resistance factor ranged from 5 to 14 for rocks with permeabilities higher than 311 mD, indicating that the nanoparticles were able to transport easily through these rocks. However, the resistance increased to 383 when the permeability was as low as 41.2 mD, indicating that the nanogel could not penetrate the rock easily. After placing the particles, brine was injected at different flow rates. The results indicate that the nanoparticles effectively reduced the permeability of the rocks with the original permeabilities of 143 to 555.4 mD, but the residual resistance factor of the high-permeability rock (1,038 mD) was relatively small, ranging from 2.67 to 4.39. The resistance factor and residual resistance factor increased with the particle concentration and decreased with the flow rate, and both factors can be well fitted using power law equations as a function of velocity. The nanogel adsorption layer thickness decreased with the shear rate.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3