Nanoparticle-Fortified Emulsification of Heavy Oil

Author:

Arab Danial1,Kantzas Apostolos1,Bryant Steven L.1

Affiliation:

1. University of Calgary

Abstract

Abstract Chemical flooding has been suggested as an efficient conformance control technique to develop many of thin post-CHOPS heavy oil reservoirs in Western Canada. In-situ formation of oil in water emulsions due to the effect of surfactant/natural soap has been reported as the main mechanism behind chemical EOR. In this work, the effect of surface-modified silica NPs to enhance the efficiency of surfactant to emulsify heavy oil (14,850 mPa.s and 980 kg/m3 at 25 °C, from the Luseland field) in water has been investigated. Bulk fluid screening experiments were conducted using different surfactants and surface-modified silica NPs for selecting the best heavy oil emulsifier. Complementary experiments such as interfacial/surface tension, NP zeta potential and size measurements, and elemental analysis were conducted to understand the interactions between NPs and surfactant molecules. In the absence of NPs, concentration of both anionic and cationic surfactants should be tuned within a narrow window, near CMC, to create stable heavy oil in water emulsions. It was found that there is a threshold for IFT, obtained at the CMC, which should be met to have stable oil in water emulsions. The created oil in water emulsions break easily at surfactant concentrations higher than the CMC, yielding IFTs higher than the threshold. This observation was also seen in a system containing dodecane. At the CMC of both anionic and cationic surfactants, the IFT between dodecane and an aqueous phase is negative, producing stable dodecane in water emulsions for over three months. In the presence of surface-modified silica NPs heavy oil emulsification is achieved at surfactant concentrations much lower than the CMC. In this case, IFT is remarkably (54 %) reduced, well below the threshold value, due to the combined effect of 2 wt. % negatively-charged silica NPs and only 0.1 wt. % anionic surfactant. These results suggest that the repulsive interaction between negatively-charged NPs and anionic surfactant may result in pushing the surfactant molecules back towards the oil-water interface to enhance IFT reduction.

Publisher

SPE

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3