Experimental Investigation and Optimization of Polymer Enhanced CO2 Foam Stability and Apparent Viscosity

Author:

Ahmed Shehzad1,Elraies Khaled Abdalla1,Hashmet Muhammad Rehan2,Bt Mohd Shaifan Siti Rohaida3,Hsia Ivy Chai3,Bahrim Ridhwan Zhafri3

Affiliation:

1. Universiti Teknologi PETRONAS

2. Petroleum Institute

3. PETRONAS Research Sdn Bhd

Abstract

Abstract Polymer enhanced foam (PEF) provides an additional strength over conventional CO2 foams for mobilizing oil from the unswept low permeable oil rich zones during an enhanced oil recovery process. The efficiency of the process depends on two major factors i.e. stability and apparent viscosity of PEF. In this study, an experimental investigation of apparent viscosity and stability of polymer enhanced CO2 foam is presented with an objective to assess the polymer performance and to identify the best performing polymer under reservoir conditions of 1500 psi and 80 °C. For this purpose, conventional standard hydrolyzed polymacrylamide (HPAM) polymers and an associative polymer i.e. Superpusher P329 were used in combination with a widely used foamer i.e. alpha olefin sulfonate (AOS) and a foam stabilizer i.e. betaine. Foam stability tests were conducted in the presence of crude oil using FoamScan. Whereas for foam rheological study, a high pressure high temperature Foam Rheometer was utilized and the foam was sheared over the range of 10 to 500 sec−1 inside the recirculating loop. As compared to other HPAMs, an associative polymer i.e. Superpusher P329 significantly amplified foam longevity and provided a more prolonged liquid drainage. A shear thinning behavior was observed for the entire range of shear rate tested and for all the tested foam. HPAMs were found ineffective in improving foam apparent viscosity and the viscosities obtained were found equivalent to that to polymer free foam. Superpusher P329 showed interesting combination with AOS and significant viscosity enhancement has been reported in this paper. This research concluded that Superpusher P329 has the ability to generate strong foam and it is a potiential candidate for mobility control during polymer enhanced CO2 foam flooding process. Keywords: Polymer Enhanced Foam, foam stability, apparent viscosity; CO2 foam.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3